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ON CONFOJUIAL DIFFEOMORPBISM BETWEEN
ALMOST IIBRlllTIAN JIANIFOLDS AND

KAEBLE:RI.AN IlANIFOLDS

b-BAE KIN AND ]IN-T.u KIM

1. IRtrodactio.

Under a non-homothetic confonnal dUfeomorphism. of an almost
Hermitian manifold M onto a Kaehlerian manifold M* of real dimension
>4, M is a non-Kaehlerian Hermitian manifold. As a subclass of almost
Hermitian manifolds, RK-manifolds have interesting geometrical properties
and many geometers are concerned with them (see [1], [6], [7]).

A conformal diffeomorphism f of a Riemannian manifold (M, g) onto a
Riemannian manifold (M*, g*) is characterized by the metric change

(1.1) f*Ir*""p::':2g,
where p is a positive scalar field on M. The purpose of this paper is
to prove

THEoREM 1. If there is a tum-homothetic conformol dijfeWUJrphism f
of an olmost Hermitilm manifold M onto a Kaehlerian mtmifold M* of
reol dimension>4, then f preserves the /wlomorphic sectional currJatures
H of M and H* of M*, that is, p2H=H* and at least one of the
scalar curvatures of M and M* are Mt constant.

THEoREM 2. Let f be a conformol dijfeomorphism of an almost
Hermitian manifold M onto a Kaehlerian manifold M* of real dimension
>4. Then M is a RK.-1fUlnifold if an only if the characteristic scalar
field p satisfies tke eqruztion

v:rdp=cX,
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for any vector field X on M, where c is a positive constant. In the case
when M is complete, both M and M* are locally Euclidean.

2. Preliminaries

Let M and M* be 2n-dimensional Riemannian manifolds with Rie­
mannian metrics g and g* respectively. Under the conformal diffeomor­
phism f characterized by (1.1), we shall denote the gradient vector
field of log p by U, that is,

(2.1) g(U, X) =X log p

for any vector field X on M. The Riemannian connections with respect
to g and g* will be denoted by 17 and 17* respectively. Then it follows
from (1. 1) and (2. 1) that

(2.2) P*xY-P'xY=g(x, Y)U-g(U, Y)X-g(U,X)Y

for any vector fields X and Y on M. From now on, quantities of M*
associated to that of M will be denoted by asterisking.

A bilinear 2-form P on M defined by

(2.3) P(X, Y)=(XY-PxY)logp+g(U,X)g(U, Y)

- ~ IU/2g (X, Y)

is symmetric for any vector fields X and Y on M, where IUI is the
magnitude of U. A linear transformation Q of M associated to P is
given by

(2.4) g(QX, Y) =P(X, Y).

The curvature tensor, the Ricci tensor and the scalar curvature of M will
be denoted by K, Ric and 1& respectively. Then using (2. 2), (2. 3) and
(2.4), we have th~ transformation formulas ([5J)

(2.5)

(2.6)

(2.7)

K*(X, Y)Z=K(X, Y)Z+P(Y, Z)X-P(X, Z) Y
+g(Y, Z)QX-g(X, Z)QY,

Ric*(X, Y) =Ric(X, Y) +2(n- I)P (X, Y)
+EP(Ej, Ej)g(X, Y),

i
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for any vector fields X, Y and Z on M, where {Ei } is any orthonormal
frame for M.

Now assume that M is an almost Hermitian. manifold with the structure
(g, J) and M* is a Kaehlerian manifold with the structure (g*, J*).
The structure (g. J) satisfies

J!=-I. g(JX. JY)=g(X. Y).

for any vector fields X and Y on M, and (g*. J*) does

(2.8) J*2=_], g*(J*X*, J*Y*)=g*(X*, y*). y*J*=O

for any vector fields x* and y* on M*. Since the conformal diffeomor­
phism I: M~M* is holomorphic. 1 preserves the complex structure,
that is,

I*J*=J*f*.

Therefore it follows from (1. 1) and the third of (2. 5) that

(2.9) (YxJ) Y=g(U. JY)X-g(U, Y)JX+g(X. Y)JU-g(X, JY)U.

The Nijenhuis tensor N of M is given by

N(X. Y)=[JX, JY]-J[X, JY]-J[JX, Y]-[X, f].

It is easily verified that N vanishes identically on M by virtue of (2.9).
Thus we can state

LEMMA 2. 1. 11 there is a conformal diffeom<Jrphism f of an almost
Hermitian manifold M onto a Kaehlerian manifold M*, then M is a
Hermitian manifold.

An almost Hermitian manifold M is called a RK-manifold if the
curvature tensor field K of M satisfies

(2.10) g(K (JX, JY)JZ, JW) =g(K(X, Y)Z, W).

The geometry of the RK-manifolds has been studied by L. Vanheke
([6J) and L. Vanheke and K. Yano ([7]).

3. Proof of the Theorems

First of all, differentiating (2. 7) covariantly along M, we have
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(3.1) K(X, Y, JZ, JW) - K(X, Y, Z, W)
=g(X, W)P(Y,Z)-g(Y, W)P(X,Z)

-g(X, JW)P(Y, JZ) +g(Y, JW)P(X, JZ)
+P(X, W)g(Y, Z) -P(Y, W)g(X, Z)
-P(X, JW)g(Y, {Z) +P(Y, JW)g(X, JZ)

for any vector fields X, Y, Z and W on M. If we apply the first Bianchi
identity to (3. 1), then we obtain

(3.2) g (X, JW) {P (Z, JY) - P (Y, JZ) } +2P(X, JW)g (Z, JY)
+g(Y, JW) (P(X, JZ) -P(Z, JX)} +2P(Y, JW)g(X, JZ)
+g(Z, JW) {P(Y, JX) -P(X, JY)} +2P(Z, JW)g(Y. JX)
=0

Let {Eh ...• E2.. } be any orthonormal frame for M. Putting X=JE; and
W =E; into (3.2) and summing over i. we have

(3.3) (n-2) {P(Z, JY) -P(Y. JZ)} +EP(JE;, JE;)g(Z. JY) =0.
i

Putting Y=Ej and Z=JE; again into (3.3) and taking account of the
relation EP(JE, JEj ) = EP(E;, E i). we also have

i i

(3.4) EP(E;, E;) =0.
i

Then it follows from (3. 3) and (3. 4) that

(3.5) P(X. JY) =P(Y. JX).

The holomorphic sectional curvature H (X. JX) of any holomorphic
section p(X, JX) in an almost Hermition manifold M is given by

(3.6) H(X JX)=- g(K(X,JX)X,JX)
, {g(X.X»)2

for any vector fields X on M. Since the equations (2. 5) and (3. 5)
lead to

K*(X, JX, X, JX) =p-2K(X, JX, X, JX).

we have

H*(X, JX)=p2H(X, JX)
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which shows that f preserves the holomorphic sectional curvatures.
Moreover, comparing (2. 7) with (3. 4), we have

which means that one of the scalar curvatures ,,* and" is not a constant.­
This completes the proof of Theorme l.

To prove Theorem 2, if we replace X and Y in (3.1) with JX and
JY respectively, then we have

(3.7) K(JX, JY, JZ, JW) -K(JX, JY, Z, W)
=g(JX, W)P(JY, Z) -g(JY, W)P(JX, Z)

-g(X, W)P(JY, JZ) +g(Y, W)P(JX, JZ)
+P(JX, W)g(JY, Z) -P(JY, W)g(JX, Z)
-P(JX, JW)g(Y, Z) +P(JY, JW)g(X, Z).

By a substitution of (3. 1) into (3.7), we get

(3.8) K(JX, JY, JZ, JW) -K(X, Y, Z, W)
=g(X, Z) {P(JY, JW) -P(Y, W)}

-g(Y, Z) {P(JX, JW) -P(X, W)}
-g(X, W) {P(JY, JZ) -P(Y, Z)}
+g(Y, W){P(JX, JZ) -P(X, Z)}.

Since M is a RK-manifold, we can easily obtain from (2.10) and (3,8)
that

(3.9) P(JX, JY) =P(X, Y).

(3.11)

Therefore it follows from (3.5) and (3.9) that P(X, Y) =0, that is,

(3.10) (XY-17xY)logp=-g(U,X)g(U, Y)+ ~ IUI2g (X, Y).

We see that the equation (3.10) is equivalent to

/7 d - 1 Igrad p 1
2 X

X P-2 p •

In terms of the canonical coordinate { a:l } of M, (3. 11) is expressed

by
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l7.p.=1.. Igrad pl2 g ..
t'1' 2 P '1'

Applying 2pi to the above equation, we have 19rad p!2=C'p, where c·
is a constant. Thus (3. 11) is reduced to

(3.12) 17xdp=cX,

(3.14)

which shows that p is a concircular scalar field (see [lJ).
Conversely if p satisfies the equation (3. 12), we can easily show that

M is aRK-manifold.
The remaining part of the theorem 2 follows from the results due to

Y. Tashiro ([3],[4J). If a complete Riemannian manifold of dimension
>2 admits a concircular scalar field given by (3. 12), M is locally
Euclidean

REMARK. The Bochner curvature tensor B* of a Kaehlerian manifold
M* is givn by

(3.13) B*(X*, Y*)Z*=K*(X*, Y*)Z*+g*(Y*, Z*)C*X*
-g*(X*, Z*)C*Y*-L*(X*, Z*) y*
+L*(Y*, Z*)X*+g*(J*Y*, Z*)C*J*X*
-L*(J*X*, Z*)J*Y*+L*(J*Y*, Z*)J*X*
-g*(J*X*, Z*)C*J* Y*-U* (J*X*, Y*)J*Z*
-2g*(J*X*, Y*)C*J*Z*

for any vector fields X*, Y* and z* on M*, where we have put

L*(X*, Y*) = - 2(n~2) Ric*(X*, Y*)

+ 8(n+ If(n+2) g*(X*, Y*)

and C* is its corresponding transformation defined by

g*(C*X*, Y*)=L*(X*, Y*).

Under the conformal diffeomorphism f of M onto M*, it follows from
(2.6), (2.7) and (3.4) that

(3.15) L*(X, Y) =L(X, Y) - :~~ P(X, Y)
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for any vector fields X and Y on M, where we have put

L(X, Y)=- 2(n~2) Ric(X, Y)+ 8(n+l)(n+2) g(X, Y).

And we shall denote by C the corresponding transformation to L.
Substituting (2. 5) and (3. 15) into (3. 13), we obtain

(3.16) B*(X, Y)Z=B(X, Y)Z+ n~2 {P(Y, Z)X

-P(X, Z) Y+g(Y, Z)QX-g(X, Z)QY}

+ :~~ {g(JY, Z) QJX-g (JX, Z)QJY

+P(JX, Z)JY-P(JY, Z)JX-2P(JX, Y)JZ
-2g(JX, Y)QJZ}

for any vector fields X, Y and Z on M, where

B(X, Y)Z=K(X, Y)Z+g(Y, Z)CX-g(X, Z)CY-L(X, Z) Y
+L(Y, Z)X+g(JY, Z)CJX-L(JX, Z)JY+L(JY, Z)JX
-g(JX, Z)CJY-2L(JX, Y)JZ-2g(JX, Y)CJZ.

Such B is called a Bochner curvature tensor of an almost Hermitian
manifold (see [6J).

Suppose that f preserves the Bochner curvature tensors Band B*,
that is, B=B* on M, then we have

(3.17) 3{P(Y; Z)X-P(X, Z) Y+g(Y, Z)QX-g(X, Z)QY
- (n-I) {g(JY, Z) QJX-g (JX, Z)QJY
+P(JX, Z)JY-P(JY, Z)JX-2P(JX, Y)JZ
-2g(JX, Y)QJZ} =0

For any othonormal frame for M, putting Y=JE j and Z=E j into (3.17)
and summing over i, we also have

(3.18) P(X, Y)=O,

which shows that M is a RK-manifold. Conversely if M is aRK-manifold,
we see that B=B* on M. Thus we can state

PROPOSITION 3. Let f be a conformal diffeomorphism of an almost
Hermitian manifold M onto a Kaehlerian manifold M*. Then M is a
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RK.-manifold if and only if f preserves the Bochner curvature tensors B
of M and B* of M*.
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