• Title/Summary/Keyword: alloplastic materials

Search Result 50, Processing Time 0.017 seconds

THE EFFECTS OF POROUS HYDROXYAPATITE AND NATURAL CORAL ON HUMAN PERIODONTAL DEFECTS (인체 치간부위 치조골 결손에 사용된 합성골의 효과에 관한 연구)

  • Shim, Jeong-Min;Choi, Kwang-Choon;Son, Seong-Heul
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.2
    • /
    • pp.345-351
    • /
    • 1993
  • Various alloplastic materials have been used on the periodontally diseased ossous defects. Hydroxyapatite, which is used the most common alloplastic material is a non-resorbable form of calcium phosphate and natural coral which is a biodegradable by carbonic anhydrase in osteoclast was introduced recently. The purpose of the present study was to evaluate the clinical effects of porous hydoxyapatite and natural coral on the human periodontal defects. Four males and three females who had adult periodontitis were selected for this study. The teeth that had similar bone loss radiographically and periodontal pocket deeper than 5mm were selected. Gingival recession, pocket depth, plaque index(Silness & Loe), sulcus bleeding index and tooth mobility (measured by Periotest$^{(r)}$) were examined before graft. Before insertion of alloplastic materials, the depth from CEJ to bone crest and from CEJ to base of the osseous defect was recorded. Porous particulate hydroxyapatite(Interpore 200$^{(r)}$, A group) was place on the defect and natural coral(Biocoral$^{(r)}$, B group) was placed on the defect of the opposing tooth. Six months post-surgically the same parameters were recorded by reentry procedures. A and B group showed 0.6mm of mean recession. Mean reduction of pocket depth were 5mm for A group and 4.9mm of B group. Reduced SBI and tooth mobility were recorded. Osseous defect fills of the original defects were 2.9mm for A and 3mm for B group. Percentage defect fills were 71% for A and 59% for B group. The difference of defect fill between pre- and post-insertion was statstically significant(p<0.05). But the difference between the two groups was not significant statistically(p<0.05). The clinical impression at 6 month re-entry and the numerical date indicate that natural coral as well as porous particulate hydoxyapatite has a definite potential as an alloplastic implant in the treatment of periodontal osseous defects.

  • PDF

Temporomandibular joint reconstruction using autogenous tissue (임상가를 위한 특집 3 - 자가 조직이식을 통한 턱관절 재건)

  • Lee, Jong-Ho;Lee, Jung-Woo;Lee, Jin-Yong;Kim, Soung-Min;Kim, Myung-Jin
    • The Journal of the Korean dental association
    • /
    • v.50 no.5
    • /
    • pp.262-269
    • /
    • 2012
  • TMJ reconstruction is one of the most challenging surgical treatment, and many methods using autogenous and alloplastic materials have been reported for making neocondyle. Although alloplastic materials which include aclylic, synthetic and total joint system are recently widely used, many surgeons agree that autogenous TMJ reconstruction is gold standard until now. In this article, classification of the TMJ defects and the various TMJ reconstruction methods using autogenous source were introduced with review of literature.

Comparison of Physical & Histological Change of Alloplastic Implants after Implantation in Rat (흰쥐에 삽입된 인공성형삽입물의 생체내 물리, 조직학적 변화의 비교)

  • Kim, Sung Nam;Noh, Bok Kyun;Kim, Eui Sik;Hwang, Jae Ha;Kim, Kwang Seog;Lee, Sam Yong;Cho, Bek Hyun
    • Archives of Plastic Surgery
    • /
    • v.33 no.2
    • /
    • pp.219-224
    • /
    • 2006
  • Augmentation rhinoplasty is one of the most popular aesthetic procedure in Asians. Numerous alloplastic implants have been used until now, but no accurate comparative analysis about the implant materials has been reported yet. This study in animal model was designed to determine the safety and effectiveness of various implant materials in augmentation rhinoplasty. The $15{\times}15{\times}2mm$ sized square shaped plate of $Gore-Tex^{(R)}$, silicone rubber, and $15{\times}15{\times}1.5mm$ sized $Medpor^{(R)}$ were implanted under panniculus carnosus of the abdomen wall of rat. And tissue specimens including the implant and surrounding soft tissue were obtained by en bloc excision in 6 months after implantation. The implants were estimated in weight and volume, and also the specimens were examined grossly and microscopically. The results revealed that increase of average weight 26.9%, decrease of average volume 55.4% in $Gore-Tex^{(R)}$ implant, increase of each average weight and volume 62.6%, 8.7% in $Medpor^{(R)}$ implant and very slight increase of both average weight and volume 4.7%, 1.1% in silicone rubber implant. Grossly, the $Gore-Tex^{(R)}$ was deformed, $Medpor^{(R)}$ was strongly adherent to surrounding soft tissue and the silicone rubber was well encapsulated and easily peeled off. Microscopically, silicone rubber showed foreign body reaction slightly and there were no inflammatory responses in all alloplastic implants. In our study, silicone rubber showed very proper alloplastic features for augmentation rhinoplasty due to causing no inflammatory response, no physical change, and no deformity.

Influence of wound closure on volume stability with the application of different GBR materials: an in vitro cone-beam computed tomographic study

  • Naenni, Nadja;Berner, Tanja;Waller, Tobias;Huesler, Juerg;Hammerle, Christoph Hans Franz;Thoma, Daniel Stefan
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.1
    • /
    • pp.14-24
    • /
    • 2019
  • Purpose: To assess the influence of using different combinations of guided bone regeneration (GBR) materials on volume changes after wound closure at peri-implant dehiscence defects. Methods: In 5 pig mandibles, standardized bone defects were created and implants were centrally placed. The defects were augmented using different combinations of GBR materials: xenogeneic granulate and collagen membrane (group 1, n=10), xenogeneic granulate and alloplastic membrane (group 2, n=10), alloplastic granulates and alloplastic membrane (group 3, n=10). The horizontal thickness was assessed using cone-beam computed tomography before and after suturing. Measurements were performed at the implant shoulder (HT0) and at 1 mm (HT1) and 2mm (HT2) below. The data were statistically analysed using the Wilcoxon signed-rank test to evaluate within-group differences. Bonferroni correction was applied when calculating statistical significance between the groups. Results: The mean horizontal thickness before suturing was $2.55{\pm}0.53mm$ (group 1), $1.94{\pm}0.56mm$ (group 2), and $2.49{\pm}0.73mm$ (group 3). Post-suturing, the values were $1.47{\pm}0.31mm$ (group 1), $1.77{\pm}0.27mm$ (group 2), and $2.00{\pm}0.48mm$ (group 3). All groups demonstrated a loss of horizontal dimension. Intragroup changes exhibited significant differences in group 1 (P<0.001) and group 3 (P<0.01). Intergroup comparisons revealed statistically significant differences of the relative changes between groups 1 and 2 (P=0.033) and groups 1 and 3 (P=0.015). Conclusions: Volume change after wound closure was minimized by using an alloplastic membrane. The stability of the augmented horizontal thickness was most ensured by using this type of membrane irrespective of the bone substitute material used for membrane support.

Cranioplasty Using Three-Dimensional-Printed Polycaprolactone Implant and Free Latissimus Dorsi Musculocutaneous Flap in a Patient with Repeated Wound Problem following Titanium Cranioplasty

  • Hee Tae Koo;Jeongseok Oh;Chan Yeong Heo
    • Archives of Plastic Surgery
    • /
    • v.49 no.6
    • /
    • pp.740-744
    • /
    • 2022
  • Titanium mesh is an alloplastic material widely used for the reconstruction of moderate-to-large skull defects. Repeated wound problems or infection following these reconstructions inevitably lead to the replacement of the cranioplasty material. Among the various alloplastic materials, polycaprolactone implants are usually used for the coverage of small defects such as burr holes. Herein, we present a case of a large cranial defect successfully reconstructed with three-dimensional-printed polycaprolactone implant and a free latissimus dorsi musculocutaneous flap. Until 1-year followup, the patient showed a favorable esthetic outcome with no complications or wound relapse.

Late Complication of a Silicone Implant Thirty Years after Orbital Fracture Reconstruction

  • Lee, Chi An;Kang, Seok Joo;Yun, Ji Young;Sun, Hook
    • Archives of Craniofacial Surgery
    • /
    • v.18 no.2
    • /
    • pp.137-140
    • /
    • 2017
  • Alloplastic materials used for orbital fracture reconstruction can induce complications, such as infection, migration, extrusion, intraorbital hemorrhage, and residual diplopia. Silicone is one of the alloplastic materials that has been widely used for decades. The author reports a rare case of spontaneous extrusion of a silicone implant that was used for orbital fracture reconstruction 30 years earlier. A 50-year-old man was admitted to the emergency room for an exposed substance in the lower eyelid area of the left eye, which began as a palpable hard nodule a week earlier. The exposed material was considered to be implant used for previous surgery. Under general anesthesia, the implant and parts of the fibrous capsule tissue were removed. Several factors hinder the diagnosis of implant extrusions that occur a long period after the surgery. So, surgeons must be aware that complications with implants can still arise several decades following orbital fracture reconstruction, even without specific causes.

Dental alloplastic bone substitutes currently available in Korea

  • Ku, Jeong-Kui;Hong, Inseok;Lee, Bu-Kyu;Yun, Pil-Young;Lee, Jeong Keun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.45 no.2
    • /
    • pp.51-67
    • /
    • 2019
  • As dental implant surgery and bone grafts were widely operated in Korean dentist, many bone substitutes are commercially available, currently. For commercially used in Korea, all bone substitutes are firstly evaluated by the Ministry of Health and Welfare (MOHW) for safety and efficacy of the product. After being priced, classified, and registration by the Health Insurance Review and Assessment Service (HIRA), the post-application management is obligatory for the manufacturer (or representative importer) to receive a certificate of Good Manufacturing Practice by Ministry of Food and Drug Safety. Currently, bone substitutes are broadly classified into C group (bone union and fracture fixation), T group (human tissue), L group (general and dental material) and non-insurance material group in MOHW notification No. 2018-248. Among them, bone substitutes classified as dental materials (L7) are divided as xenograft and alloplastic bone graft. The purpose of this paper is to analyze alloplastic bone substitutes of 37 products in MOHW notification No. 2018-248 and to evaluate the reference level based on the ISI Web of Knowledge, PubMed, EMBASE (1980-2019), Cochrane Database, and Google Scholar using the criteria of registered or trademarked product name.

THE EFFECT OF NEW BONE FORMATION OF ONLAY BONE GRAFT USING VARIOUS GRAFT MATERIALS WITH A TITANIUM CAP ON THE RABBIT CALVARIUM (가토의 두개골에서 티타늄 반구를 이용한 다양한 onlay bone graft시 골형성 능력)

  • Park, Young-Jun;Choi, Guen-Ho;Jang, Jung-Rok;Jung, Seung-Gon;Han, Man-Seung;Yu, Min-Gi;Kook, Min-Suk;Park, Hong-Ju;Ryu, Sun-Youl;Oh, Hee-Kyun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.6
    • /
    • pp.469-477
    • /
    • 2009
  • Purpose: This study was performed to evaluate the effect of various graft materials used with a titanium cap on the ability of new bone formation in the rabbit calvarium. Materials and Methods: A total of 32 sites of artificial bony defects were prepared on the calvaria of sixteen rabbits by using a trephine bur 8 mm in diameter. Each rabbit had two defect sites. 0.2 mm deep grooves were formed on the calvaria of sixteen rabbits by using a trephine bur 8 mm in diameter for the fixation of a titanium cap. The treatments were performed respectively as follows: without any graft for the control group (n=8), autogenous iliac bone graft for experimental group 1 (n=8), alloplastic bone graft ($SynthoGraft^{(R)}$, USA) for experimental group 2 (n=8), and xenogenic bone graft ($NuOss^{(R)}$, USA) for experimental group 3 (n=8). After the treatments, a titanium cap (8 mm in diameter, 4 mm high, and 0.2 mm thick) was fixed into the groove. At the third and sixth postoperative weeks, rabbits in each group were sacrificed for histological analysis. Results: 1. In gross examination, the surgical sites showed no signs of inflammation or wound dehiscence, and semicircular-shaped bone remodeling was shown both in the experimental and control groups. 2. In histological analysis, the control group at the third week showed bone remodeling along the inner surface of the cap and at the contact region of the calvarium without any specific infiltration of inflammation tissue. Also, there was no soft tissue infiltration. Bone remodeling was observed around the grafted bone and along the inner surface of the titanium cap in experimental group 1, 2, and 3. 3. Histologically, all groups at the sixth week showed the increased area of bone remodeling and maturation compared to those at the third week. In experimental group 2, the grafted bone was partially absorbed by multi nucleated giant cells and new bone was formed by osteoblasts. In group 3, however, resorption of the grafted bone was not observed. 4. Autogenous bone at the third and sixth week showed the most powerful ability of new bone formation. The size of newly formed bone was in decreasing order by autogenous, alloplastic, and heterogenous bone graft. There was no statistically significant difference among autogenous, alloplastic, and heterogenous bones(p>0.05). Summary: This result suggests that autogenous bone is the best choice for new bone formation, but when autogenous bone graft is in limited availability, alloplastic and xenogenic bone graft also can be an alternative bone graft material to use with a suitably guided membrane.

Open Reduction and Internal Fixation (ORIF) of Trapdoor Orbital Floor Blowout Fracture with Absorbable Mesh Plate (뚜껑문 안와저 골절에 있어서 망상 흡수성 판을 이용한 관혈적 정복술 및 내고정술)

  • Kwon, Yu-Jin;Kim, Ji-Hoon;Hwang, Jae-Ha;Kim, Kwang-Seog;Lee, Sam-Yong
    • Archives of Plastic Surgery
    • /
    • v.37 no.5
    • /
    • pp.619-625
    • /
    • 2010
  • Purpose: Trapdoor orbital blowout fracture is most common in orbital blowout fracture. Various materials have been used to reconstruct orbital floor blowout fracture. Absorbable alloplastic implants are needed because of disadvantages of nonabsorbable alloplastic materials and donor morbidity of autogenous tissue. The aim of the study is to evaluate usefulness of absorbable mesh plate as a reconstructive material for orbital blowout fractures. Methods: From December 2008 to October 2009, 18 trapdoor orbital floor blowout fracture patients were treated using elevator fixation, depressor fixation, or elevatordepressor fixation techniques with absorbable mesh plates and screw, depending on degree of orbital floor reduction, because absorbable mesh plates are less rigid than titanium plates and other artificial substitutes. Results: Among 18 patients, 5 elevator fixation, 4 depressor fixation, and 9 elevator and depressor fixation technique were performed. In all patients, postoperative computed tomographic (CT) scan showed complete reduction of orbital contents and orbital floor, and no displacement of bony fragment and mesh plate. Mean follow-up was 10 months. There were no significant intraoperative or postoperative complications. Conclusion: Three different techniques depending on the degree of orbital floor reduction are useful for open reduction and internal fixation of trapdoor orbital floor blowout fracture with absorbable mesh plates.

A DOUBLE LAYERS TECHNIQUE FOR MAXILLARY SINUS AUGMENTATION WITH DEMINERALIZED AND MINERALIZED BONE GRAFT MATERIALS (탈회골과 비탈회골을 이용하여 2층 구조로 이식한 상악동골이식술)

  • Lee, Eun-Young;Kim, Kyoung-Won
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.1
    • /
    • pp.46-52
    • /
    • 2009
  • The maxillary posterior edentulous region presents unique and challenging conditions in implant dentistry. The height of the posterior maxilla is reduced greatly as a result of dual resorption from the crest of the ridge and pneumatization of the maxillary sinus after the loss of teeth. Materials previously used for sinus floor grafting include autogenous bone, allogeneic bone, xenogenic bone and alloplastic materials. Autogenous bone is the material of choice, but its use is limited by donor-site morbidity, complications, sparse availability, uncontrolled resorption and marked volume loss. One way to overcome this problem would be to use bone substitutes alone as a osteoconductive scaffold for bone regeneration from the residual bone or in combination with allogeneic bone, which also has osteoinductive properties. The purpose of this article is to describe a double layers technique of demineralized and mineralized bone graft materials instead of autogenous bone in sinus floor augmentation of deficient posterior maxillary alveolar process and to report our experience with this technique. Our results show that maxillary sinus augmentation using mineralized and demineralized bone materials, when installed simultaneously with the implant or not, is good results for bone healing.