• Title/Summary/Keyword: algicidal bacteria

Search Result 32, Processing Time 0.026 seconds

Development of Immobilized Naphthoquinone for Effective Algicidal Activity under Various Environmental Conditions and It's Ecological Changing Monitoring (다양한 환경에서의 효율적 녹조 저감을 위한 Naphthquinone 물질의 담체화 기술 개발 및 이에 따른 생태계 변화 모니터링)

  • Joo, Jae-Hyoung;Park, Chong-Sung;Kuang, Zhen;Byun, Jeong-Hwan;Lee, Heon Woo;Choi, Hye Jeong;Han, Myung-Soo
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.4
    • /
    • pp.281-291
    • /
    • 2016
  • Bloom of small centric diatom Stephanodiscus is quite occasional in winter season in temperate freshwater ecosystems. It often leads to degradation of water quality and affects the quality of supplied drinking water. In a previous study, we have found that naphthoquinone (NQ) 4-6 derivate is an effective tool for efficient mitigation of natural S. hantzschii blooms. In the present research, polylactide (PLA) and agar foam were used as immobilized agent for NQ 4-6 to improve the efficiency of NQ 4-6 compound releasing process for its application under various field conditions. Mesocosm experiments at 10 ton scale suggested that the abundance of S. hantzschii was continuously increased in the control and upon treatment of the mesocosm with immobilized NQ 4-6 from PLA and agar foam. Their algicidal activities were 78.8% and 77.1%, respectively, on S. hantzschii after 10 days. In the mesocosm experiments, the dynamics of biotic (bacteria, HNFs, ciliates, zooplankton) and abiotic (water temperature, dissolved oxygen, pH, conductivity, nutrients) factors remained unaffected. They exhibited similar trends in the control and treatment groups. Therefore, the immobilized NQ 4-6 from PLA and agar foam has potential to be used as an alternative algicidal substance to effectively mitigate natural S. hantzschii blooms under various field conditions. In addition, it not only can be used to control S. hantzschii, but also is an effective technique. The immobilized NQ 4-6 showed stable controlled release in desired system.

Algicidal Effects of a Newly Developed Thiazolidinedione Derivative, TD49, on Dinoflagellate Akashiwo sanguinea (Thiazolidinedione 유도체(TD49) 물질을 이용한 적조생물 Akashiwo sanguinea의 제어)

  • Baek, Seung-Ho;Shin, Hyeon-Ho;Jang, Min-Chul;Kim, Si-Wouk;Son, Moon-Ho;Cho, Hoon;Kim, Young-Ok
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.125-135
    • /
    • 2012
  • To evaluate the algicidal impact of a newly developed algicide thiazolidinedione derivative, TD49, on dinophyceae Akashiwo sanguinea in aquatic ecosystems, tentative culture experiments for the target species were conducted in small (SS), middle (MS), and large scale (LS) culture vessels. When TD49 was introduced at the final concentration of $2{\mu}M$ in SS and MS, as well as $1{\mu}M$ in LS, the abundance of A. sanguinea decreased significantly in all the treatments. On the other hand, total phytoplankton abundance, except A. sanguinea in the TD49 treatments, gradually increased with culture time, which implies that a cell destruction of A. sanguinea by TD49 is a major cause of the population growth by other phytoplankton species. Also, A. sanguinea was easily destroyed, which was likely to be a source of extracellular substances. In particular, a pH decrease was significant in the treatments than in the control, which indicates that the water in the treatments has been acidified, due to an increase in the heterotrophic metabolisms of bacteria and degradation of A. sanguinea cells. Our results indicate that the TD49 substance is the potential agents for the control of A. sanguinea in the enclosed and eutrophic water bodies.

Effects of Biological Control Agent Algicidal Bacterium on the Phytoplankton Community and Microcystin-LR Contents in a Mesocosm Experiment (살조세균 적용이 식물플랑크톤 군집과 조류독소 분포에 미치는 영향)

  • Jung, Seung-Won;Seo, Jong-Kun;Suh, Mi-Yeon;Han, Myung-Soo;Kim, Baik-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.2 s.112
    • /
    • pp.261-270
    • /
    • 2005
  • Biological control agents (BCA; algicidal bacterium Xantobacter autotrophycus) plus casitone media, strongly changed physicochemical variables, standing crops of phytoplankton and microcystin-LR phytoplankton in 100-L mesocosm constructed in a small hexagonal pond (3.5 m ${\times}$ 5 m). No M. aeruginosa showed by 8 days, and 60% of total standing crops of phytoplanktons were decreased by the BCA treatment. BCA treatment also induced a strong decline of cellular extracted microcystin-LR (MCLR) and a remarkable increase of dissolved MCLR with the decrement in standing crops of cyanobacteria. In addition, BCA strongly increased all nutrients, but new outbreak of phytoplanktons hardly showed in the experimental mesocosm. The field application of BCA to controling the cyanobacterial bloom in large lakes and reservoirs is not relevant due to high concentration of nutrients and toxins. Thus, a further study is needed to diminish the adverse effects after BCA treatment for water quality preservation.

Toxicity of Chloramine-T on the Flounder, Paralichthys olivaceus, and Bactertcidal Activity Against Fish Pathogenic Bacteria and Blue Green Algae, Tetraselmis suecica (Chloramine-T의 넙치에 대한 독성과 어병세균 및 Blue Green Algae에 대한 살균 효과)

  • Hwang, Eun-A;Jeong, Hyun-Do
    • Journal of fish pathology
    • /
    • v.13 no.1
    • /
    • pp.37-44
    • /
    • 2000
  • CT(Sodium N-chloro-para toluenesulfonamide, Chloramine-T) known to be a strong oxidative agent was investigated to use as a candidate of disinfectant in the marine aquaculture industry by the analysis of the bactericidal activity against different aquatic microorganisms. One hundred percent mortality appeared at and above 16 ppm CT in sea water in flounder, the predominant species in the marine aquaculture of Korea, when exposed for 48hr. However, bactericidal activity was appeared to be very effective, and all different species of the fish pathogenic bacteria exposed to CT of less than 2 ppm in sea water were dead within 15 min. It allowed us to confirm that CT could be a very effective disinfectant to protect the spread of fish pathogenic bacteria derived from diseased fish or sea water in marine aquaculture. High concentration(10 ppm) with longer exposing time(24 hrs) was required for the algicidal activity of CT, at which concentration might induce the acute toxicity against fish, however, restricted the expanded use of CT for the elimination of zooplanktons at phytoplanktons in marine farms. Moreover the bactericidal activity of CT inhibited almost completely in the present of more than 10 ppm of organic materials pointed out that quality of the culturing sea water should be considered carefully for the application CT to the aquatic farms as a therapeutic agent.

  • PDF

A Field Application Feasibility of Biologically Derived Substances (Naphthoquinone Derivate: NQ 2-0) for the Mitigation of Harmful Cyanobacterial Blooms (유해 남조류 제어를 위한 생물유래 살조물질 Naphthoquinone 유도체 (NQ 2-0)의 현장 적용 가능성)

  • Joo, Jae-Hyoung;Park, Chong-Sung;Choi, Hye Jeong;Lee, Heon Woo;Han, Myung-Soo
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.3
    • /
    • pp.130-141
    • /
    • 2017
  • We evaluated the field application feasibility that biologically derived substances (Naphthoquinone derivate: NQ 2-0) can be used for the eco-friendly mitigation of natural harmful cyanobacterial blooms in freshwater. We conducted a 30 ton scale mesocosm experiment to investigate the effects of NQ 2-0 on biotic and abiotic factors in water collected from Gi-heung reservoir. In the mesocosm experiments, the abundance of Microcystis sp. was continuously increased in the control. However, the Microcystis sp. cell density was sharply decreased on the $10^{th}$ day. In the treatment, NQ 2-0 showed the strong and selective algicidal activity toward the target cyanobacteria (Microcystis sp.). Accordingly, the algicidal activity of NQ 2-0 compound increased gradually until $10^{th}$, $15^{th}$ days and algal biomass was decreased to 99.4 and 100 %, respectively. NQ 2-0 compound was not only selective algicidal activity but also the growth of other phytoplankton and increased the Shannon-Wiener diversity index of phytoplankton. In the mesocosm experiments, the dynamics of biotic (bacteria, heterotrophic nanoflagellate, ciliates, zooplankton) and abiotic (water temperature, dissolved oxygen, pH, conductivity, nutrients) factors remained unaffected. These results suggest that NQ 2-0 could be a selective and ecologically safe algicide to mitigate harmful cyanobacterial blooms. In addition, it is believed that NQ 2-0 will play a major role in forming a healthy aquatic ecosystem by facilitating habitat and food supply of aquatic organisms.

Inhibition of Microcystis aeruginosa by the Extracellular Substances from an Aeromonas sp.

  • Liu, Yu-Mei;Chen, Ming-Jun;Wang, Meng-Hui;Jia, Rui-Bao;Li, Li
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1304-1307
    • /
    • 2013
  • Growth of Microcystis aeruginosa could be inhibited significantly within 24 h by the extracellular substances prepared from Aeromonas sp. strain FM. During the treatment, the concentration of extracellular soluble carbohydrates increased significantly in algal culture. Morphological and ultrastructural changes in M. aeruginosa cells, including breakage of the cell surface, secretion of mucilage, and intracellular disorganization of thylakoids, were observed. HPLC-MS analysis showed that the extracellular substances of Aeromonas sp. strain FM were a mixture of free amino acids, tripeptides, and clavulanate. Among these, the algaelysis effects of lysine and clavulanate were confirmed.

A Case Study of Biologically Derived Algicidal Substances (Naphthoquinone Derivative) for Mitigate of Stephanodiscus and It's Ecological Changing Monitoring (생물유래 살조물질 Naphthoquinone 유도체의 규조 Stephanodiscus 제어 효과 및 생태계 변화 모니터링: A case study)

  • Joo, Jae-Hyoung;Park, Bum Soo;Kim, Sae Hee;Han, Myung-Soo
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.1
    • /
    • pp.72-81
    • /
    • 2020
  • Blooms of the small centric diatom Stephanodiscus is quite occasional in winter season in temperate freshwater ecosystems. Often, it leads to degradation of water quality and affects quality of supplied drinking water. In previous studies, naphthoquinone (NQ) compounds have been shown to be effective and selective for controlling winter bloom species Stephanodiscus hantzschii. We conducted a 5 ton scale mesocosm experiment to investigate the effects of NQ on native Stephanodiscus sp. collected from Nakdonggang River in water. After treatment with NQ 4-6 compound (0.2 μM), the cell density of Stephanodiscus sp. was rapidly reduced from 5 × 103 cells mL-1 to 0.2 × 103 cells mL-1 for 10 days. Additionally, NQ 4-6 compound did not affect physicochemical factors (water temperature, dissolved oxygen, pH, conductivity, nutrients) and biological factors (bacteria, heterotrophic nanoflagellates, zooplankton). Therefore, these findings suggest that the NQ 4-6 compound has potential as an alternative algicidal substances to effectively mitigate natural Stephanodiscus sp. blooms, and the application of NQ 4-6 compound will restore the healthy aquatic ecosystems.

Isolation and Characterization of the Marine Bacterium, Alteromonas sp. SR-14 Inhibiting the Growth of Diatom, Chaetoceros Species (규조류 Chaetoceros sp. 증식 저해균 Alteromonas sp. SR-14의 분리 및 특성)

  • KIM Ji Hoe;PARK Jeong Heum;SONG Young Hwan;CHANG Dong Suck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.2
    • /
    • pp.155-159
    • /
    • 1999
  • Marine bacteria inhibiting the growth of the diatom, Chaetoceros calcitrans were screened from seawater samples collected at south coast of Korea in 1996. Six strains were isolated from those samples. Among them, a bacterium SR-14 strain had the strongest inhibition activity against the alga. The selected SR-14 strain was identified as an Alteromonas sp. (supposed to be Alteromonas colwelliana) according to its biochemical results. Alteromonas sp. SR-14 was able to grow in raw seawater, aged seawater, Conwy medium for culture of microalgae and C. calcitrans culture filtrate. The host ranges of Alteromonas sp. SR-14 were C. calcitrans, C. muclleri and C. negracile among 10 species of diatom. All of the Chaetoceros spp. tested were inhibited by the Alteromonas sp. SR-14, However, the growth of the other genera in Bacillariophyceae was not inhibited.

  • PDF

Short -term changes of microbial communities after control of Cochlodinium polykrikoides by yellow clay and chemical compound dosing in microcosm experiments (황토와 화학물질 살포에 의한 적조생물Cochlodinium polykrikoides 제어에 따른 미소생물그룹의 단주기변화)

  • Baek, Seung Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2971-2977
    • /
    • 2015
  • This study aimed to understand the changes in microbial community after algicide dosing to control the fish-killing dinoflagellate Cochlodinium polykrikoides in 10L microcosm. Based on our microcosm experiments, the algicidal activity for C. polykrikoides of yellow clay at the concentrations of 4g and 10g per 10 L was < 20%. At $0.8{\mu}M$ concentration of thiazolidinedione(TD49), the population of C. polykrikoides was controlled to be > 85%. In microbial community, a significant increase in heterotrophic bacterial (HB) abundance was observed at day 1 in the TD49 and yellow clay treatments including control. The HB remained high for 2 days and then gradually decreased. In contrast, the abundance of heterotrophic nanoflagellates (HNFs) increased significantly on days 3 and 5 in the TD49 treatments, indicating that the decline in HB was probably a result of predation by the high density of HNFs. In addition, fluctuations in the aloricate ciliate Uronema sp., which feed on bacteria, was clearly correlated with fluctuations in HB abundance, with a lag period of 1-3 days. Therefore, the short-term responses of the HNF and Uronema sp. may have been a result of the rapidly increasing of HB abundance, which is related to degradation of the dense C. polykrikoides bloom, particularly in the TD49 treatment. In addition, large aloricate ciliate Euplotes sp. was significantly increased after reproduction of HNFs and Uronema sp. Consequently, the algicide TD49 had positive effect on the microbial communities, which indicates that the microbial loop was temporarily enhanced in the microcosm by energy flow from HB through HNFs to ciliate.

Isolation of Marine Bacteria Killing Red Tide Microalgae I. Isolation and Algicidal Properties of Micrococcus sp. LG-1 Possessing Killing Activity for Harmful Dinoflagellate, Cochlodinium polykrikoides (적조생물 살조세균 탐색 I. 유해 적조생물 Cochlodinium Polykrikoides 살조세균 Micrococcus sp. LG-1의 분리와 살조특성)

  • PARK Young-Tae;PARK Ji-Bin;CHUNG Seong-Youn;Song Byung-Chul;LIM Wol-Ae;KIM Chang-Hoon;LEE Won-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.5
    • /
    • pp.767-773
    • /
    • 1998
  • In this study, we have investigated the distributions and killing effects of marine bacteria that tend to kill the red tide microalgae, C. polykikoides in the area of Masan bay from June to October, 1996. To summarize, C. polykikoides killing bacteria were detected at $10^2$ to $10^3$ cells/ml of seawater samples during the survey period, and the bloom was observed in September by containing $4.8\times10^3$cells/ml. It appears however that the number of these bacteria is decreased ($2.0\times10^2$cells/ml) in October, A total of 110 strains were isolated from seawater samples and seawater filtrate (pore size, 0.8 $\mu$m)-containing mixed culture of C. polykikoides in which the mixed culture was grown in f/2 medium. As results we have successfully isolated Micrococcus sp. LG-1 which decreased to less than 10cells/ml within 6days and 5days sfter inoculation of Micrococcus sp. LG-1 into the la9 and logarithmic growth phases of C. polykrikoides respectively. Therefore, it appears that inoculation of Micrococcus sp. LG-1 against the logarithmic C. polykrikoides is more effective than the lag growth phase, (n addition, the killing effects were increased in accordance with bacterial cell densities inoculated in a dose dependent manner. Especially, the filtrate of kitling bacterium culture (nore size, 0.2 $\mu$m) revealed a dramatic effect in which C. polykrikoides were decreased to less than 10 cells/mf of culture within 1 hr, 1,5 hrs, 1,5 hrs, 3.5 hrs. and 5,5 hrs after inoculations of the culture filtrate with concentration of $30\%,\;20\%,\;10\%,\;5\%$ and $2.5\%$, respectively. Moreover Micrococcus sp. LG-1 showed a selective specificity against C. polykrikoides and any other killing effects of Micrococcus sp. LG-1 were not observed against Alexandrium tamarense, Prorocentrum micans, Scrippsiella trochoidea. ana Gymnodinium sanguineum.

  • PDF