DOI QR코드

DOI QR Code

유해 남조류 제어를 위한 생물유래 살조물질 Naphthoquinone 유도체 (NQ 2-0)의 현장 적용 가능성

A Field Application Feasibility of Biologically Derived Substances (Naphthoquinone Derivate: NQ 2-0) for the Mitigation of Harmful Cyanobacterial Blooms

  • 투고 : 2017.08.10
  • 심사 : 2017.09.06
  • 발행 : 2017.09.30

초록

유해 남조류를 친환경적으로 제어하기 위해 개발된 생물유래 물질인 naphthoquinone (NQ) 유도체의 현장 적용 가능성을 확인하고자 하였다. 기흥 저수지 수변에 30 ton 규모의 mesocosm을 설치하여 현장 조건에서의 살조효과와 비생물학적, 생물학적 요인을 모니터링하였다. NQ 2-0 물질을 처리한 결과, 대조구에서는 대상 조류인 Microcystis sp.의 세포밀도가 지속적으로 증가한 반면, 처리구에서는 실험 초기 $7.9{\times}10^4cells\;mL^{-1}$에서 접종 후 점진적으로 세포수가 감소하여 10일차 $9.7{\times}10^2cells\;mL^{-1}$으로 대조구 대비 99.4% 감소하였다. 실험 종료시인 15일차에는 Microcystis sp. 세포수가 100% 제거되었다. 대상 조류인 Microcystis sp. 종만을 선택적으로 제어하였을 뿐만 아니라, 다른 식물플랑크톤의 성장과 식물플랑크톤 종 다양성 지수도 증진되었다. 또한, 식물플랑크톤을 제외하고 NQ 2-0 물질에 의하여 물리 화학적요인 (수온, 용존 산소, pH, 전기전도도, 영양염)과 생물요인 (박테리아, HNFs, 섬모충, 동물플랑크톤)에 영향을 미치지 않았으며, 대조구와 처리구에서 유사한 경향이 관찰되었다.

We evaluated the field application feasibility that biologically derived substances (Naphthoquinone derivate: NQ 2-0) can be used for the eco-friendly mitigation of natural harmful cyanobacterial blooms in freshwater. We conducted a 30 ton scale mesocosm experiment to investigate the effects of NQ 2-0 on biotic and abiotic factors in water collected from Gi-heung reservoir. In the mesocosm experiments, the abundance of Microcystis sp. was continuously increased in the control. However, the Microcystis sp. cell density was sharply decreased on the $10^{th}$ day. In the treatment, NQ 2-0 showed the strong and selective algicidal activity toward the target cyanobacteria (Microcystis sp.). Accordingly, the algicidal activity of NQ 2-0 compound increased gradually until $10^{th}$, $15^{th}$ days and algal biomass was decreased to 99.4 and 100 %, respectively. NQ 2-0 compound was not only selective algicidal activity but also the growth of other phytoplankton and increased the Shannon-Wiener diversity index of phytoplankton. In the mesocosm experiments, the dynamics of biotic (bacteria, heterotrophic nanoflagellate, ciliates, zooplankton) and abiotic (water temperature, dissolved oxygen, pH, conductivity, nutrients) factors remained unaffected. These results suggest that NQ 2-0 could be a selective and ecologically safe algicide to mitigate harmful cyanobacterial blooms. In addition, it is believed that NQ 2-0 will play a major role in forming a healthy aquatic ecosystem by facilitating habitat and food supply of aquatic organisms.

키워드

참고문헌

  1. APHA. 2005. Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF, Washington D.C., USA.
  2. Ahn, C.Y., Park, M.H., Joung, S.H., Kim, H.S., Jang, K.Y., and Oh, H.M. 2003. Growth inhibition of cyanobacteria by ultrasonic radiation: laboratory and enclosure studies. Environmental Science & Technology 37(13): 3031-3037. https://doi.org/10.1021/es034048z
  3. Ahn, C., Mitsch, W.J., and Wolfe, W.E. 2001. Effects of recycled FGD liner material on water quality and macrophytes of constructed wetlands: A mesocosm experiment. Water Research 35(3): 633-642. https://doi.org/10.1016/S0043-1354(00)00325-0
  4. Baek, S.H., Jang, M.C., Son, M., Kim, S.W., Cho, H., and Kim, Y.O. 2013. Algicidal effects on Heterosigma akashiwo and Chattonella marina (Raphidophyceae), and toxic effects on natural plankton assemblages by a thiazolidinedione derivative TD49 in a microcosm. Journal of Applied Phycology 25(4): 1055-1064. https://doi.org/10.1007/s10811-012-9905-2
  5. Byun, J.H., Joo, J.H., Kim, B.H., and Han, M.S. 2015. Application possibility of naphthoquinone derivative Nq 4-6 for mitigation of winter diatom bloom. Ecology and Resilient Infrastructure 2(3): 224-236. (in Korean) https://doi.org/10.17820/eri.2015.2.3.224
  6. Dong, Y., Chin, S.F., Blanco, E., Bey, E.A., Kabbani, W., Xie, X.J., Bornmann, W.G., Boothman, D.A., and Gao, J. 2009. Intratumoral delivery of ${\beta}$-lapachone via polymer implants for prostate cancer therapy. Clinical Cancer Research 15(1): 131-139. https://doi.org/10.1158/1078-0432.CCR-08-1691
  7. Han, M.S., Lee, K., and Yoo, K.I. 1995. Ecological studies on Togyo reservoir in Chulwon, Korea I. A field test for in situ aquatic net-enclosure mesocosm. Korean Journal of Limnology 28: 487-495. (in Korean)
  8. Hickey, C.W. and Gibbs, M.M. 2009. Lake sediment phosphorus release management-decision support and risk assessment framework. New Zealand Journal of Marine and Freshwater Research 43(3): 819-856. https://doi.org/10.1080/00288330909510043
  9. Hong, S.K. 2014. A Convention on biological diversity, island biodiversity and strategy of Korea. Journal of Korean Island 26: 187-202. (in Korean)
  10. Jeong, H.J., Kim, J.S., Y.D. Yoo, Kim, S.T., Song, J.Y., Kim, T.H., Seong, K.A., Kang, N.S., Kim, M.S., Kim, J.H., Kim, S., Ryu, J., Lee, H.M., and Yih, W.H. 2008. Control of the harmful alga Cochlodinium polykrikoides by the naked ciliate Strombidinopsis jeokjo in mesocosm enclosures. Harmful Algae 7(3): 368-377. https://doi.org/10.1016/j.hal.2007.12.004
  11. Joo, J.H., Kang, Y.H., Park, B.S., Park, C.S., Cho, H., and Han, M.S. 2016a. A field application feasibility assessment of naphthoquinone derivatives for the mitigation of freshwater diatom Stephanodiscus blooms. Journal of Applied Phycology 28 (3): 1735-1746. https://doi.org/10.1007/s10811-015-0686-2
  12. Joo, J.H., Cho, H., and Han, M.S. 2016b. Novel algicidal substance (naphthoquinone group) from bio-derived synthetic materials against harmful Cyanobacteria, Microcystis and Dolichospermum. Ecology and Resilient Infrastructure 3(1): 22-34. (in Korean) https://doi.org/10.17820/eri.2016.3.1.022
  13. Joo, J.H., Wang, P., Park, B.S., Byun, J.H., Choi, H.J., Kim, S.H., and Han, M.S. 2017. Improvement of cyanobacterialkilling biologically derived substances (BDSs) using an ecologically safe and cost-effective naphthoquinone derivative. Ecotoxicology and Environmental Safety 141:188-198. https://doi.org/10.1016/j.ecoenv.2017.02.006
  14. Jung, S.W., Kim, B.H., Katano, T., Kong, D.S., and Han, M.S. 2008. Pseudomonas fluorescens HYK0210-SK09 offers species-specific biological control of winter algal blooms caused by freshwater diatom Stephanodiscus hantzschii, Journal of Applied Microbiology 105: 186-195. https://doi.org/10.1111/j.1365-2672.2008.03733.x
  15. Jung, S.W., Kwon, O.Y., Lee, J.H., and Han, M.S. 2009. Effects of water temperature and silicate on the winter blooming diatom Stephanodiscus hantzschii (Bacillariophyceae) growing in eutrophic conditions in the lower Han River, South Korea. Journal of Freshwater Ecology 24: 219-226. https://doi.org/10.1080/02705060.2009.9664286
  16. Kang, Y.H., Jung, S.W., Joo, J.H., and Han, M.S. 2012. Use of immobilized algicidal bacteria to control natural freshwater diatom blooms. Hydrobiologia 683:151-162. https://doi.org/10.1007/s10750-011-0951-6
  17. Kang, Y.H., Kim, B.R., Choi, H.J., Seo, J.G., Kim B.H., and Han, M.S. 2007. Enhancement of algicidal activity by immobilization of algicidal bacteria antagonistic to Stephanodiscus hantzschii (Bacillariophyceae). Journal of Applied Microbiology 103: 1983-1994. https://doi.org/10.1111/j.1365-2672.2007.03439.x
  18. Kang, Y.H., Jung, S.W., Jo, S.H., and Han, M.S. 2011. Field assessment of the potential of algicidal bacteria against diatom blooms. Biocontrol Science and Technology 21:969-984. https://doi.org/10.1080/09583157.2011.591922
  19. Kang, Y.H., Kim, J.D., Kim, B.H., Kong, D.S., and Han, M.S. 2005. Isolation and characterization of a bio-agent antagonistic to diatom, Stephanodiscus hantzschii. Journal of Applied Microbiology 98: 1030-1038. https://doi.org/10.1111/j.1365-2672.2005.02533.x
  20. Kaya, K., Liu, Y.D., Shen, Y.W., Xiao, B.D., and Sano, T. 2005. Selective control of toxic Microcystis water blooms using lysine and malonic acid: an enclosure experiment. Environmental toxicology 20(2): 170-178. https://doi.org/10.1002/tox.20092
  21. Kim, H.M., Lee, J.H., and An, K.G. 2008. Water quality and ecosystem health assessments in 407 urban stream ecosystem. Korean Journal of Environmental Biology 26: 311-322. (in Korean)
  22. Kiviranta, J., K. Sivonen, S.I. Sivonen and K. Huovinen. 1991. Detection of toxicity of cyanobacteria by Artemia salina bioassay. Environmental Toxicology 6: 423-436.
  23. Margalef, R. 1958. Information theory in ecology. General Systems 3: 36-71.
  24. Monks, T.J., Hanzlik, R.P., Cohen, G.M., Ross, D., and Graham, D.G. 1992. Quinone chemistry and toxicity. Toxicology and Applied Pharmacology 112: 2-16. https://doi.org/10.1016/0041-008X(92)90273-U
  25. Naito, W., Miyamoto, K.I., Nakanishi, J., Masunaga, S., and Bartell, S.M. 2003. Evaluation of an ecosystem model in ecological risk assessment of chemicals. Chemosphere 53(4): 363-375. https://doi.org/10.1016/S0045-6535(03)00055-9
  26. Nakai, S., Yamada, S., and Hosomi, M. 2005. Anti-cyanobacterial fatty acids released from Myriophyllum spicatum. Hydrobiologia 543(1): 71-78. https://doi.org/10.1007/s10750-004-6822-7
  27. Nakano, S.I., Koitabashi, T., and Ueda, T. 1998. Seasonal changes in abundance of heterotrophic nanoflagellates and their consumption of bacteria in Lake Biwa with special reference to trophic interactions with Daphnia galeata. Archiv fur Hydrobiologie 142(1): 21-34. https://doi.org/10.1127/archiv-hydrobiol/142/1998/21
  28. O'Brien, P.J. 1991. Molecular mechanisms of quinone cytotoxicity. Chemico-Biological Interactions 80: 1-41. https://doi.org/10.1016/0009-2797(91)90029-7
  29. Oberholster, P.J., Botha, A.M., and Grobbelaar, J.U. 2004. Microcystis aeruginosa: source of toxic microcystins in drinking water. African Journal of Biotechnology 3: 159-168.
  30. Orihel, D.M., Paterson, M.J., Gilmour, C.C., Bodaly, R.A., Blanchfield, P.J., Hintelmann, H., Harris, R.C., and Rudd, J.W. 2006. Effect of loading rate on the fate of mercury in littoral mesocosms. Environmental Science & Technology 40(19): 5992-6000. https://doi.org/10.1021/es060823+
  31. Odum, H.T. and Odum, B. 2003. Concepts and methods of ecological engineering. Ecological Engineering 20(5): 339-361. https://doi.org/10.1016/j.ecoleng.2003.08.008
  32. Patterson, D.J. 2003. Free-living Freshwater Protozoa, ASM Press, Washington, USA.
  33. Pielou, E.C. 1969. Shannon's formula as a measure of specific diversity: its use and misuse. The American Naturalist 100: 463-465.
  34. Pilkaityte, R., Schoor, A., and Schubert, H. 2004. Response of phytoplankton communities to salinity changes-a mesocosm approach. Hydrobiologia 513(1): 27-38. https://doi.org/10.1023/B:hydr.0000018162.50270.54
  35. Prieto, L., Ruiz, J., Echevarria, F., Garcia, C.M., Bartual, A., Galvez, J.A., Corzo, A., and Macias, D. 2002. Scales and processes in the aggregation of diatom blooms: high time resolution and wide size range records in a mesocosm study. Deep Sea Research Part I: Oceanographic Research Papers 49(7): 1233-1253. https://doi.org/10.1016/S0967-0637(02)00024-9
  36. Rahmoun, N.M., Boucherit-Otmani, Z., Boucherit, K., Benabdallah, M., Villemin, D., and Choukchou-Braham, N. 2012. Antibacterial and antifungal activity of lawsone and novel naphthoquinone derivatives. Medecine et Maladies Infectieuses 42: 270-275. https://doi.org/10.1016/j.medmal.2012.05.002
  37. Round, F.E., Crawford, R.M., and Mann, D.G. 1990. The diatom biology and morphology of genera, Cambridge University Press, Cambridge, UK.
  38. Shao, J., Xu, Y., Wang, Z., Jiang, Y., Yu, G., Peng, X., and Li, R. 2011. Elucidating the toxicity targets of ${\beta}$-ionone on photosynthetic system of Microcystis aeruginosa NIES-843 (Cyanobacteria). Aquatic Toxicology 104(1): 48-55. https://doi.org/10.1016/j.aquatox.2011.03.014
  39. Schrader, K.K., Nanayakkara, N.D., Tucker, C.S., Rimando, A.M., Ganzera, M., and Schaneberg, B.T. 2003. Novel derivatives of 9, 10-anthraquinone are selective algicides against the musty-odor cyanobacterium Oscillatoria perornata. Applied and Environmental Microbiology 69(9): 5319-5327. https://doi.org/10.1128/AEM.69.9.5319-5327.2003
  40. Tangmouo, J.G., Meli, A.L., Komguem, J., Kuete, V., Ngounou, F.N., Lontsi, D., Beng, V.P., Choudhary, M.I., Sondengam, B.L. 2006. Crassiflorone, a new naphthoquinone from Diospyros crassiflora (Hien). Tetrahedron Letters 47: 3067-3070. https://doi.org/10.1016/j.tetlet.2006.03.006
  41. Willis, K.J., Van Den Brink, P.J., and Green, J.D. 2004. Seasonal variation in plankton community responses of mesocosms dosed with pentachlorophenol. Ecotoxicology 13(7): 707-720. https://doi.org/10.1007/s10646-003-4430-3
  42. Wirth, E.F., Pennington, P.L., Lawton, J.C., DeLorenzo, M.E., Bearden, D., Shaddrix, B., Sivertsen, S., and Fulton, M.H. 2004. The effects of the contemporary-use insecticide (fipronil) in an estuarine mesocosm. Environmental Pollution 131(3): 365-371. https://doi.org/10.1016/j.envpol.2004.03.012
  43. Wu, Y., Liu, J., Yang, L., Chen, H., Zhang, S., Zhao, H., and Zhang, N. 2011. Allelopathic control of cyanobacterial blooms by periphyton biofilms. Environmental Microbiology 13(3): 604-615. https://doi.org/10.1111/j.1462-2920.2010.02363.x

피인용 문헌

  1. Cyanobacteria-specific algicidal mechanism of bioinspired naphthoquinone derivative, NQ 2-0 vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-29976-5