• Title/Summary/Keyword: algae oil

Search Result 48, Processing Time 0.031 seconds

Algicidal Characteristics of Cashew Nut Oil against Microalgae and Development of its Mixtures with Synergistic Effects (미세조류에 대한 캐슈넛 오일의 살조활성특징과 상승효과를 가지는 혼합처리제 탐색)

  • Kwak, Hwa Sook;Kim, Bo Gwan;Kim, Jin-Seog
    • Weed & Turfgrass Science
    • /
    • v.5 no.3
    • /
    • pp.136-143
    • /
    • 2016
  • This study was conducted to investigate the algicidal characteristics of cashew nut oil (CNO) and to develop CNO mixtures with other compounds having synergistic effects on the growth inhibition against a blue-green alga, Microcystis aeruginosa. Among tested CNOs, CNO with higher anacardic acid contents (Ana-A) exhibited the best algicidal activity against M. aeruginosa. Ana-A showed broad algicidal spectrum with particular greater activity against blue-green algae than green algae. Ana-A showed the greatest activity against to Oscillatoria tenuis ($IC_{50}=0.19{\mu}g\;mL^{-1}$) among the tested blue-green algae and to Chlorella vulgaris ($IC_{50}=4.54{\mu}g\;mL^{-1}$) among the tested green algae, respectively. In a mixture experiment to evaluate a chemical interaction in M. aeruginosa control, Ana-A showed a strong synergistic effect with MSB and menadione, mild synergistic effect with citric acid, and additive effect with chryspophanol, copper sulfate and quinoclamine. Taken together, our results suggest that CNO containing higher anacardic acid can be used as an eco-friendly natural algicide for selective control of blue-green algae such as M. aeruginosa and O. tenuis through an optimization of application rate and in combination with synergists such as MSB and menadione.

Omega-3 Oxidation State of Fish and Algae Oil Supplements in South Korea (오메가-3 제품의 산화에 대한 안정성 조사)

  • Park, Geon-Yeong;Kim, Young-Suk;Kim, Yang-Hui;Shin, Sang-Woon;Cho, Sang-Hun;Eum, Kyoung-Suk;Hong, Se-Ra;Yoon, Mi-Hye
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.5
    • /
    • pp.480-488
    • /
    • 2019
  • To ensure the safety of products containing omega-3 fatty acids, twenty fish and algae oil omega-3 products available in a Gyeonggi Province, South Korea market were analyzed for eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content, as well as for oxidative status. Of the tested products, 90% complied with the CODEX/FAO fish oil standards on a p-anisidine value (p-AV) limit of 20, and 80% complied with the CODEX/FAO fish oil standards on the TOTOX limit of 26, respectively. Fully 100% of the products complied with EPA/DHA content levels. In addition, 90% of the tested products met with a peroxide value (PV) limit of 10 meq/kg while 95% of products were within the a p-AV limit of 30. Also, 95% of the products had a calculated TOTOX value of 50, which is lower than the stringent limits used by the European and British Pharmacopeia and Australian authorities.

Screening for Antioxidant Activity of Plants and Marine Algae and Its Active Principles from Prunus davidiana

  • Choi, Jae-Sue;Lee, Ji-Hyeon;Park, Hae-Jin;Kim, Hyung-Geun;Young, Han-Suk;Mun, Sook-Im
    • Korean Journal of Pharmacognosy
    • /
    • v.24 no.4
    • /
    • pp.299-303
    • /
    • 1993
  • The antioxidant activity of methanol extracts of plants and marine algae was tested by using 1,1-diphenyl-2-picrylhydrazyl(DPPH). Five plant extracts(Prunus davidiana, Eriobotrya japonica, Artemisia iwayomogi, Stirodella tolyrrhiza and Ulmus davidiana) and two algae (Ecklonia stolonifera and Symphycoladia latiuscula) were found to be the most effective in DPPH radical scavenging activity. The methanol extract obtained from the stems of Prunus davidiana was fractionated with several solvents. The ethylacetate soluble fraction exhibiting the strongest antioxidant activity was further purified by repeated silica gel and Sephadex LH-20 column chromatography. Antioxidant flavonoids and flavonoid glycosides were isolated and the most active ones was identified as (+)-catechin by MS, $^1H-NMR$ and $^{13}C-NMR$. Its antioxidant activity was higher than that oil vitamin C.

  • PDF

Analysis and Enzymatic Production of Structured Lipids Containing DHA Using a Stirred-Batch Type Reactor (회분식 반응기를 이용한 DHA 함유 재구성지질의 효소적 합성 및 이화학적 특성 분석)

  • Kim, Nam-Sook;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.7
    • /
    • pp.1052-1058
    • /
    • 2005
  • Structured lipid (SL) was synthesized by enzymatic interesterification with algae oil containing docosahexaenoic acid (DHA) and soybean oil in the stirred-batch type reactor. The reaction was performed for 15hr at $65^{\circ}C$ with 300 rpm catalyzed by sn-1,3 specific Lipozyme RM 1M lipase from Rhizomucor miehei ($11\%$ by weight of total substrates) in the absent organic solvent. SL contained $87.1\;area\%$ triacylglycerol (TAG), $12.1\;area\%$ diacylglycerol (DAG), $0.6\;area\%$ monoacylglycerol (MAG), and $0.2\;area\%$ free fatty acid (FFA). Major fatty acid profiles of SL were DHA $(15.7\;mol\%)$, linoleic $(31.1\;mol\%)$, palmitic $(20.2\;mol\%)$, oleic $(13.5\;mol\%)$ and eicosapentaenoic acid $(EPA,\;6.6 mol\%)$. SL contained the newly synthesized several peaks. Iodine and saponification of SL were 206.7 and 183.8. SL color showed darker and redder than soybean oil, and appeared the most yellowish color among SL, soybean, and algae oil.

Biomass and oil content of microalgae under mixotrophic conditions

  • Choi, Hee-Jeong;Lee, Seung-Mok
    • Environmental Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.25-32
    • /
    • 2015
  • The growth of the algae strains Neochloris oleabundans, Botryococcus Braunii and Dunaliella sp. under mixotrophic conditions in the presence of different concentrations of crude glycerol was evaluated with the objective of increasing the biomass growth and algal oil content. A high biomass concentration was characteristic of these strains when grown on crude glycerol compared to autotrophic growth, and 5 g/L glycerol yielded the highest biomass concentration for these strains. Mixotrophic conditions improved both the growth of the microalgae and the accumulation of triacylglycerols (TAGs). The maximum amount of TAGs in the algal strains was obtained in the 5 g/L glycerol growth medium. The fatty acid profiles of the oil for the cultures met the necessary requirements and are promising resources for biofuel production.

Application of Lignocellulosic and Macro-algae Hydrolysates for Culture of Chlorella saccharophila (Chlorella saccharophila 배양을 위한 목질계 및 해조류 바이오매스 가수분해물의 이용)

  • Kim, A-Ram;Kim, Hyo Seon;Park, Mi-Ra;Kim, Sung-Koo;Jeong, Gwi-Taek
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.522-528
    • /
    • 2016
  • In this study, we investigated the possibility of using hydrolysates of lignocellulosics (rapeseed straw, barley straw, rice straw) and marine macro-algae (Undaria pinnatifida, Laminaria japonica, Enteromorpha intestinalis, and Gracilaria verrucosa) to cultivate Chlorella saccharophila. The growth of C. saccharophila was inhibited by 7 hydrolysates without active carbon treatment. In contrast, hydrolysates treated with active carbon increased the cell growth and product (oil and chlorophyll) formation by C. saccharophila. The oil contents of C. saccharophila treated with each hydrolysate were $41.26{\pm}0.69%$ (glucose), $22.06{\pm}1.21%$ (rapeseed straw), $28.65{\pm}1.08%$ (barley straw), $31.15{\pm}0.76%$ (rice straw), $31.50{\pm}2.12%$ (U. pinnatifida), $31.49{\pm}4.53%$ (L. japonica), $29.63{\pm}3.93%$ (E. intestinalis), and $26.15{\pm}1.99%$ (G. verrucosa), respectively. Lignocellulosics and marine macro-algae may be useful resources for improving the mass cultivation of C. saccharophila.

Optimization of Enzymatic Synthesis Condition of Structured Lipids by Response Surface Methodology (반응표면분석에 의한 기능성 유지의 효소적 합성 조건 최적화)

  • Cho, Eun-Jin;Lee, Jong-Ho;Lee, Ki-Teak
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.531-536
    • /
    • 2004
  • Synthesis conditions were optimized using response surface methodology for producing structured lipids (SL) by interesterification of DHA-enriched algae oil derived from microalgae, Schizochytrium sp. and corn oil. Reaction was performed fer 24 hr at $55^{\circ}C$ catalyzed by immobilized lipase from Rhizomucor miehei (RM IM) in shaking water bath. Major fatty acids of SL were palmitic (21.70 mol%), oleic (20.20 mol%), and linoleic (27.34 mol%) acids, and DHA (15.06 mol%). To separate newly synthesized SL-triglycerides (TG) species, HPLC with evaporative light scatting detector (ELSD) was used. Production conditions were optimized using central composite design with reaction temperature $(35-75^{\circ}C,\;X_1)$, reaction time $(2-42\;hr,\;X_2)$, and enzyme concentration $(2-14%,\;X_3)$ as variables. When variables were $70.28^{\circ}C\;(X_1),\;28.74\;hr\;(X_2),\;and\;11.30%\;(X_3)$, maximum content of selected three peaks of synthesized SL-TG species was predicted as 6.97 area%.

Recycling of Lipid-extracted Algae Cell Residue for Microorganisms Cultivation and Bioenergy Production (미세조류 탈지세포잔류물의 미생물 배양 및 바이오에너지 생산으로의 재활용)

  • Dang, Nhat Minh;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.487-496
    • /
    • 2021
  • Microalgae is one of the promising biodiesel feedstock with high growth rates compared to those of terrestrial oil crops. Despite its numerous advantages, biodiesel production from microalgae needs to reduce energy demand and material costs further to go to commercialization. During solvent extraction of microalgal lipids, lipid-extracted algae (LEA) cell residue is generated as an organic solid waste, about 80-85% of original algal biomass, and requires an appropriate recycling or economic disposal. The resulting LEA still contains significant amount of carbohydrates, proteins, N, P, and other micronutrients. This review will focus on recent advancement in the utilization of LEA as: (i) utilization as nutrients or carbon sources for microalgae and other organisms, (ii) anaerobic digestion to produce biogas or co-fermentation to produce CH4 and H2, and (iii) conversion to other forms of biofuel through thermochemical degradation processes. Possible mutual benefits in the integration of microalgae cultivation-biodiesel production-resulting LEA with anaerobic digestion and thermochemical conversion are also discussed.

Antioxidant Effect of Enzymatic Hydrolyzate from a Kelp, Ecklonia cava

  • Heo, Soo-Jin;Jeon, You-Jin;Lee, Je-Hee;Kim, Hung-Tae;Lee, Ki-Wan
    • ALGAE
    • /
    • v.18 no.4
    • /
    • pp.341-347
    • /
    • 2003
  • The potential antioxidative activity of water-soluble enzymatic hydrolyzates from a kelp, Ecklonia cava was evaluated by free radical scavenging and lipid peroxidation assays. To prepare water-soluble hydrolyzates from E. cava the seaweed was enzymatically hydrolyzed by five carbohydrases (Viscozyme, Celluclast, AMG, Termamyl and Ultraflo) and five proteases (Protamex, Kojizyme, Neutrase, Flavourzyme and Alcalase). Among all the hydrolyzates, Celluclast hydrolyzate effectively scavenged free radicals released from DPPH (1,1-diphenyl-2- pricrylhydrazyl) and recorded around 73% scavenging activity at the concentration of 4 mg ${\cdot}ml^{-1}$. This hydrolyzate was thermally stable and DPPH radical scavenging activity remained 80% or higher at heating temperatures of 40 and 60$^{\circ}C$ up to 12 h and around 80% at 100$^{\circ}C$ up to 8 h. AMG and Ultraflo hydrolyzate inhibited the lipid peroxidation of fish oil as that of $\alpha$-tocopherol. These results suggested that an enzymatic extraction will be an effective way for the production of a potential antioxidant from seaweeds.

Ultrastructural changes of Haematococcus pluvialis (Chlorophyta) in process of astaxanthin accumulation and cell damage under condition of high light with acetate

  • He, Bangxiang;Hou, Lulu;Zhang, Feng;Cong, Xiaomei;Wang, Zhendong;Guo, Yalin;Shi, Jiawei;Jiang, Ming;Zhang, Xuecheng;Zang, Xiaonan
    • ALGAE
    • /
    • v.35 no.3
    • /
    • pp.253-262
    • /
    • 2020
  • Haematococcus pluvialis is a commercial microalga that can produce high quantities of astaxanthin. Under induced conditions, some important changes in the subcellular structures related to astaxanthin accumulation were observable. For example, a large number of astaxanthin granules, oil structures and starch granules appeared in the thick-walled cells; Astaxanthin granules gradually dissolved into the oil structures and spread throughout the entire cell with the fusion and diffusion process of oil structures during the middle and late stages of induction; The plastoglobules were closed to the newly formed structures, and some plastoglobules would abnormally increase in size under stress. Based on observations of cell damage, the degradation of membrane structures, such as chloroplasts, was found to be the primary form of damage during the early stage of induction. During the middle stage of induction, some transparent holes were exposed in the dissolving astaxanthin granules in the cytoplasm. In thick-walled cells, these transparent holes were covered by oil substances dissolving astaxanthin, thereby avoiding further damage to cells. Given the relatively few oil structures, in non-thick-walled cells, the transparent holes expanded to form multiple transparent areas, eventually resulting in the rupture and death of cells. These results suggested that the high level of synthesis and the wide range diffusion of oil explained the expansion of astaxanthin in H. pluvialis.