Browse > Article
http://dx.doi.org/10.5660/WTS.2016.5.3.136

Algicidal Characteristics of Cashew Nut Oil against Microalgae and Development of its Mixtures with Synergistic Effects  

Kwak, Hwa Sook (Research Center for Eco-Friendly New Materials, Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology)
Kim, Bo Gwan (Research Center for Eco-Friendly New Materials, Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology)
Kim, Jin-Seog (Research Center for Eco-Friendly New Materials, Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology)
Publication Information
Weed & Turfgrass Science / v.5, no.3, 2016 , pp. 136-143 More about this Journal
Abstract
This study was conducted to investigate the algicidal characteristics of cashew nut oil (CNO) and to develop CNO mixtures with other compounds having synergistic effects on the growth inhibition against a blue-green alga, Microcystis aeruginosa. Among tested CNOs, CNO with higher anacardic acid contents (Ana-A) exhibited the best algicidal activity against M. aeruginosa. Ana-A showed broad algicidal spectrum with particular greater activity against blue-green algae than green algae. Ana-A showed the greatest activity against to Oscillatoria tenuis ($IC_{50}=0.19{\mu}g\;mL^{-1}$) among the tested blue-green algae and to Chlorella vulgaris ($IC_{50}=4.54{\mu}g\;mL^{-1}$) among the tested green algae, respectively. In a mixture experiment to evaluate a chemical interaction in M. aeruginosa control, Ana-A showed a strong synergistic effect with MSB and menadione, mild synergistic effect with citric acid, and additive effect with chryspophanol, copper sulfate and quinoclamine. Taken together, our results suggest that CNO containing higher anacardic acid can be used as an eco-friendly natural algicide for selective control of blue-green algae such as M. aeruginosa and O. tenuis through an optimization of application rate and in combination with synergists such as MSB and menadione.
Keywords
Cashew nut oil; Microcystis aeruginosa; Natural algicide; Ocillatoria tenuis; Synergistic effect;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ahn, C.-Y., Lee, C.S., Choi, J.W., Lee, S. and Oh, H.-M. 2015. Global occurrence of harmful cyanobacterial blooms and N, Plimitation strategy for bloom control. Kor. J. Environ. Biol. 33(1):1-6. (In Korean)   DOI
2 Aida, M., Ikeda, H., Itoh, K. and Usui, K. 2006. Effects of five rice herbicides on the growth of two threatened aquatic ferns. Ecotox. Environ. Safe. 63:463-468.   DOI
3 Begum, P., Hashidoko, Y., Islam, Md.T., Ogawa, Y. and Tahara, S. 2002. Zoosporicidal activities of anacardic acids against Aphanomyces cochlioides. Z. Naturforsch. 57c:874-882.
4 Cantrell, C.L., Mamonov, L.K., Ryabushkina, N., Kustova, T.S., Fischer, N.H., et al. 2007. Bioassay-guided isolation of anti-algal constituents from Inula helenium and Limonium myrianthum. ARKIVOC 7:65-75.
5 Chelikani, R., Kim, Y.H., Yoon, D.Y. and Kim, D.S. 2009. Enzymatic polymerization of natural anacardic acid and antibiofouling effects of polyanacardic acid coatings. Appl. Biochem. Biotech. 157(2):263-277.   DOI
6 Choi, G.J., Lee, S.W., Choi, Y.H., Jang, K.S., Kim, J.S., et al. 2004. Effects of chrysophanol, parietin, and nepodin of Rumex crispus on barley and cucumber powdery mildews. Crop Prot. 23(12):1215-1221.   DOI
7 Choi, J.S., Hwang, H.J., Seo, B.R., Kim, J.D., Jang, H.W., et al. 2009. Isolation and identification of five sesquiterpene compounds having algicidal activity from medicinal plants. Kor. J. Weed Sci. 29(2):121-130. (In Korean)
8 Choi, Y.H., Kim, J.C., Ahn, J.K., Ko, S.Y., Kim, D.H., et al. 2008. Anti-biofouling behavior of natural unsaturated hydrocarbon phenols impregnated in PDMS matrix. J. Ind. Eng. Chem. 14:292-296.   DOI
9 Colby, S.R. 1967. Calculating synergistic and antagonistic responses of herbicide combinations. Weeds 15:20-22.   DOI
10 Dayan, F.E., Cantrell, C.L. and Duke, S.O. 2009. Natural products in crop protection. Bioorgan. Med. Chem. 17(12):4022-4034.   DOI
11 Duke, S.O., Dayan, F.E., Rimando, A.M., Schrader, K.K., Aliotta, G., et al. 2002. Chemicals from nature for weed management. Weed Sci. 50:138-151.   DOI
12 Haghjou, M.M., Colville, L. and Smirnoff, N. 2014. The induction of menadione stress tolerance in the marine microalga, Dunaliella viridis, through cold pretreatment and modulation of the ascorbate and glutathione pools. Plant Physiol. Biochem. 84:96-104.   DOI
13 Haider, S., Naithani, V., Viswanathan, P.N. and Kakkar, P. 2003. Cyanobacterial toxins: a growing environmental concern. Chemosphere 52:1-21.   DOI
14 Hamad, F.B. and Mubofu, E.B. 2015. Potential biological applications of bio-based anacardic acids and their derivatives. Int. J. Mol. Sci. 16:8569-8590.   DOI
15 Himejima, M. and Kubo, I. 1991. Antibacterial agents from the cashew Anacardium occidentale (Anacardiaceae) nut shell oil. J. Agric. Food Chem. 39:418-421.   DOI
16 Jancula, D. and Marsalek, B. 2011. Critical review of actually available chemical compounds for prevention and management of cyanobacterial blooms. Chemosphere 85:1415-1422.   DOI
17 Lee, H.K., Park, J.E., Ryu, G.H, Lee, J.O. and Park, Y.S. 1993. Freshwater algae occurred in paddy rice fields. VI. Ecology of suspensible green algae and soil-flakes and their chemical control. Kor. J. Weed Sci. 13(2):96-103. (In Korean)
18 Kim, J.S., Kim, J.C., Lee, S., Lee, B.H. and Cho, K.Y. 2006. Biological activity of L-2-azetidinecarboxylic acid, isolated from Polygonatum odoratum var. pluriflorum, against several alga. Aquat. Bot. 85:1-6.   DOI
19 Kubo, I., Masuoka, N., Ha, T.J. and Tsujimoto, K. 2006. Antioxidant activity of anacardic acids. Food Chem. 99:555-562.   DOI
20 Kubo, I., Ochi, M., Vieira, P.C. and Komatsu, S. 1993. Antitumor agents from the cashew (Anacardium occidentale) apple juice. J. Agric. Food Chem. 41:1012-1015.   DOI
21 Lubi, M.C. and Thachil, E.T. 2000. Cashew nut shell liquid (CNSL)-A versatile monomer for polymer synthesis. Des. Monomers Polym. 3:123-153.   DOI
22 Muroi, H. and Kubo, I. 1993. Bactericidal activity of anacardic acids against Streptococcus mutans and their potentiation. J. Agric. Food Chem. 41:1780-1783.   DOI
23 Muroi, H., Nihei, K., Tsujimoto, K. and Kubo, I. 2004. Synergistic effects of anacardic acids and methicillin against methicillin resistant Staphylococcus aureus. Bioorgan. Med. Chem. 12(3):583-587.   DOI
24 Nusch, E.A. 1980. Comparison of different methods for chlorophyll and phaeopigment determination. Arch. Hydrobiol. Beih. (Ergebn. Limnol.) 14:14-36.
25 Ozdemir, Z. 2009. Growth inhibition of Clavibacter michiganensis subsp. michiganensis and Pseudomonas syringae pv. tomato by olive mill wastewaters and citric acid. J. Plant Pathol. 91(1):221-224.
26 Schultz, D.J., Olsen, C., Cobbs, G.A., Stolowich, N.J. and Parrott, M.M. 2006. Bioactivity of anacardic acid against Colorado potato beetle (Leptinotarsa decemlineata) larvae. J. Agric. Food Chem. 54(20):7522-7529.   DOI
27 Prithiviraj, B., Manickam, M., Singh, U.P. and Ray, A.B. 1997. Antifungal activity of anacardic acid, a naturally occurring derivative of salicylic acid. Can. J. Bot. 75(1):207-211.   DOI
28 Rea, A.I., Schmidt, J.M., Setzer, W.N., Sibanda, S., Taylor, C., et al. 2003. Cytotoxic activity of Ozoroa insignis from Zimbabwe. Fitoterapia 74:732-735.   DOI
29 Schrader, K.K. 2003. Natural algicides for the control of cyanobacterial-related off-flavor in catfish aquaculture. ACS Symposium Series 848:195-208.
30 Shobha, S.V. and Ravindranath, B. 1991. Supercritical carbon dioxide and solvent extraction of the phenolic lipids of cashew nut (Anacardium occidentale) shells, J. Agric. Food Chem. 39:2214-2217.   DOI
31 Sin, J.-G. and Im, C.S. 2000. A study on the water quality simulation in the midstream and downstream of Geum-river. J. Kor. Water Resour. Assoc. 33(2):145-157. (In Korean)
32 Sullivan, J.T., Richards, C.S., Lloyd, H.A. and Krishna, G. 1982. Anacardic acid: molluscicide in cashew nut shell liquid. Planta Med. 44(3):175-177.   DOI