Browse > Article
http://dx.doi.org/10.4491/eer.2014.043

Biomass and oil content of microalgae under mixotrophic conditions  

Choi, Hee-Jeong (Department of Environmental Engineering, Catholic Kwandong University)
Lee, Seung-Mok (Department of Environmental Engineering, Catholic Kwandong University)
Publication Information
Abstract
The growth of the algae strains Neochloris oleabundans, Botryococcus Braunii and Dunaliella sp. under mixotrophic conditions in the presence of different concentrations of crude glycerol was evaluated with the objective of increasing the biomass growth and algal oil content. A high biomass concentration was characteristic of these strains when grown on crude glycerol compared to autotrophic growth, and 5 g/L glycerol yielded the highest biomass concentration for these strains. Mixotrophic conditions improved both the growth of the microalgae and the accumulation of triacylglycerols (TAGs). The maximum amount of TAGs in the algal strains was obtained in the 5 g/L glycerol growth medium. The fatty acid profiles of the oil for the cultures met the necessary requirements and are promising resources for biofuel production.
Keywords
Biomass; Glycerol; Microalgae; Mixotrophic; Oil content;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yang C, Hua Q, Shimizu K. Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochem. Eng. J. 2000;6:87-102.   DOI   ScienceOn
2 Zhang H, Wang W, Li Y, Yang W, Shen G. Mixotrophic cultivation of Botryococcus braunii. Biomass Bioenergy. 2011;35: 1710-1715.   DOI   ScienceOn
3 Alkhamis Y, Qin JG. Cultivation of isochrysis galbana in phototrophic, heterotrophic, and mixotrophic conditions. BioMed Res. Int. 2013;2013:983465.
4 Chojnacka K, Noworyta A. Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme Microb. Technol. 2004;34:461-465.   DOI   ScienceOn
5 Bouarab L, Dauta A, Loudiki M. Heterotrophic and mixotrophic growth of Micractinium pusillum Fresenius in the presence of acetate and glucose: effect of light and acetate gradient concentration. Water Res. 2004;38:2706-2712.   DOI   ScienceOn
6 Thompson JC, He BB. Characterization of crude glycerol from biodiesel production from multiple feedstocks. Appl. Eng. Agric. 2006;22:261-265.   DOI
7 Johnson DT, Taconi KA. The glycerol glut: Options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ. Prog. 2007;26:338-348.   DOI   ScienceOn
8 Yang F, Hanna MA, Sun R. Value-added uses for crude glycerol- a byproduct of biodiesel production. Biotechnol. Biofuels. 2002;5:1-10.
9 Chi Z, Pyle D, Wen Z, Frear C, Chen S. A laboratory study of producing docosahexaenoic acid from biodiesel-water glycerol by microalgal fermentation. Process Biochem. 2007;42: 1537-1545.   DOI   ScienceOn
10 Pyle DJ, Garcia RA, Wen Z. Producitng docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition. J. Agric. Food Chem. 2008;56:3933-3939.   DOI   ScienceOn
11 Choi HJ, Lee JM, Lee SM. A novel optical panel photobioreactor for cultivation of microalgae. Water Sci. Technol. 2013;67:2543-2548.   DOI
12 Mitra D, van Leenwen J, Lamsal B. Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products. Algal Res. 2012;1:40-48.   DOI   ScienceOn
13 Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959;37:911-917.   DOI
14 Sobczuk TM, Chisti Y. Potential fuel oils from the microalga Choricystis minor. J. Chem. Technol. Biotechnol. 2010;85: 100-108.   DOI   ScienceOn
15 Stehfest K, Toepel J, Wilhelm C. The application of micro-FTIR spectroscopy to analyze nutrient stress-related changes in biomass composition of phytoplankton algae. Plant Physiol. Biochem. 2005;43:717-726.   DOI   ScienceOn
16 Andruleviciute V, Makareviciene V, Skorupskaite V, Gumbyte M. Biomass and oil content of Chlorella sp., Haematococcus sp., Nannochloris sp. and Scenedesmus sp. under mixotrophic growth conditions in the presence of technical glycerol. J. Appl. Phycol. 2014;26:83-90.   DOI   ScienceOn
17 Ceron Garcia MC, Fernandez Sevilla JM, Acien Fernandez FG, Molina Grima E, Garcia Camacho F. Mixotrophic growth of Phaeodactrylum tricornutum on glycerol: growth rate and fatty acid profile. J. Appl. Phycol. 2000;12:239-248.   DOI   ScienceOn
18 Liang Y, Sarkany N, Cui Y. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol. Lett. 2009;31:1043-1049.   DOI
19 Perez-Garcia O, de-Bashan LE, Hernandez JP, Bashan Y. Efficiency of growth and nutrient uptake from wastewater by heterotrophic, autotrophic, and mixotrophic cultivation of Chlorella vulgaris immobilized with Azospirillum brasilense. J. Phycol. 2010;46:800-812.   DOI   ScienceOn
20 Liang Y, Sarkany N, Cui Y, Blackburn JM. Batch stage study of lipid production from crude glycerol derived from yellow grease or animal fats through microalgal fermentation. Bioresour. Technol. 2010;101:6745-6750.   DOI   ScienceOn
21 Chen YH, Walker TH. Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel- derived crude glycerol. Biotechnol. Lett. 2011;33:1973-1983.   DOI   ScienceOn
22 Ramos MJ, Fernandez CM, Casas A, Rodriguez L, Perez A. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour. Technol. 2009;100:261-268.   DOI   ScienceOn
23 Kong WB, Yang H, Cao YT, Song H, Hua SF, Xia CG. Effects of glycerol and glucose on the enhancement of biomass, lipid and soluble carbohydrate production by Chlorella vulgaris in mixotrophic cultures. Food Technol. Biotechnol. 2013;51:62-69.
24 Rudolfi L, Chini Zittelli G, Bassin N, et al. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 2009;102:100-112.   DOI   ScienceOn
25 Pulz O, Grass W. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 2004;65:635-648.   DOI
26 Borowitzka MA, Moheimani NR. Sustainable biofuels from algae. Mitig. Adapt. Strateg. Glob. Chang. 2013;18:13-25.   DOI
27 Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006;101:87-96.   DOI   ScienceOn
28 Xu H, Miao X, Wu Q. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J. Biotechnol. 2006;126:499-507.   DOI   ScienceOn
29 Pittman JK, Dean AP, Osundeko O. The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 2011;102:17-25.   DOI   ScienceOn
30 Chen GQ, Chen F. Growing phototrophic cells without light. Biotechnol. Lett. 2006;28:607-616.   DOI
31 Qiao H, Wang G, Zhang X. Isolation and characterization of Chlorella sorokiniana GXNN01(Chlorophyta) with the properties of heterotrophic and microaerobic growth. J. Phycol. 2009;45:1153-1162.   DOI   ScienceOn