Browse > Article
http://dx.doi.org/10.4490/algae.2020.35.5.22

Ultrastructural changes of Haematococcus pluvialis (Chlorophyta) in process of astaxanthin accumulation and cell damage under condition of high light with acetate  

He, Bangxiang (Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China (OUC))
Hou, Lulu (Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China (OUC))
Zhang, Feng (Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China (OUC))
Cong, Xiaomei (Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China (OUC))
Wang, Zhendong (Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China (OUC))
Guo, Yalin (Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China (OUC))
Shi, Jiawei (Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China (OUC))
Jiang, Ming (Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China (OUC))
Zhang, Xuecheng (Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China (OUC))
Zang, Xiaonan (Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China (OUC))
Publication Information
ALGAE / v.35, no.3, 2020 , pp. 253-262 More about this Journal
Abstract
Haematococcus pluvialis is a commercial microalga that can produce high quantities of astaxanthin. Under induced conditions, some important changes in the subcellular structures related to astaxanthin accumulation were observable. For example, a large number of astaxanthin granules, oil structures and starch granules appeared in the thick-walled cells; Astaxanthin granules gradually dissolved into the oil structures and spread throughout the entire cell with the fusion and diffusion process of oil structures during the middle and late stages of induction; The plastoglobules were closed to the newly formed structures, and some plastoglobules would abnormally increase in size under stress. Based on observations of cell damage, the degradation of membrane structures, such as chloroplasts, was found to be the primary form of damage during the early stage of induction. During the middle stage of induction, some transparent holes were exposed in the dissolving astaxanthin granules in the cytoplasm. In thick-walled cells, these transparent holes were covered by oil substances dissolving astaxanthin, thereby avoiding further damage to cells. Given the relatively few oil structures, in non-thick-walled cells, the transparent holes expanded to form multiple transparent areas, eventually resulting in the rupture and death of cells. These results suggested that the high level of synthesis and the wide range diffusion of oil explained the expansion of astaxanthin in H. pluvialis.
Keywords
astaxanthin; Haematococcus pluvialis; high light; plastoglobule; ultrastructure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Austin, J. R., Frost, E., Vidi, P. -A., Kessler, F. & Staehelin, L. A. 2006. Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18:1693-1703.   DOI
2 Boussiba, S. 2000. Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol. Plant. 108:111-117.   DOI
3 Brehelin, C., Kessler, F. & van Wijk, K. J. 2007. Plastoglobules: versatile lipoprotein particles in plastids. Trends Plant Sci. 12:260-266.   DOI
4 Chen, G., Wang, B., Han, D., Sommerfeld, M., Lu, Y., Chen, F. & Hu, Q. 2015. Molecular mechanisms of the coordination between astaxanthin and fatty acid biosynthesis in Haematococcus pluvialis (Chlorophyceae). Plant J. 81:95-107.   DOI
5 Damiani, M. C., Leonardi, P. I., Pieroni, O. I. & Caceres, E. J. 2006. Ultrastructure of the cyst wall of Haematococcus pluvialis (Chlorophyceae): wall development and behaviour during cyst germination. Phycologia 45:616-623.   DOI
6 Deruere, J., Romer, S., d'Harlingue, A., Backhaus, R. A., Kuntz, M. & Camara, B. 1994. Fibril assembly and carotenoid overaccumulation in chromoplasts: a model for supramolecular lipoprotein structures. Plant Cell 6:119-133.   DOI
7 Evens, T. J., Niedz, R. P. & Kirkpatrick, G. J. 2008. Temperature and irradiance impacts on the growth, pigmentation and photosystem II quantum yields of Haematococcus pluvialis (Chlorophyceae). J. Appl. Phycol. 20:411-422.   DOI
8 Fabregas, J., Dominguez, A., Maseda, A. & Otero, A. 2003. Interactions between irradiance and nutrient availability during astaxanthin accumulation and degradation in Haematococcus pluvialis. Appl. Microbiol. Biotechnol. 61:545-551.   DOI
9 Focsan, A. L., Polyakov, N. E. & Kispert, L. D. 2017. Photo protection of Haematococcus pluvialis algae by astaxanthin: unique properties of astaxanthin deduced by EPR, optical and electrochemical studies. Antioxidants (Basel) 6:80.   DOI
10 Fatima Santos, M. & Mesquita, J. F. 1984. Ultrastructural study of Haematococcus lacustris (Girod.) Rostafinski (Volvocales). I. Some aspects of carotenogenesis. Cytologia 49:215-228.   DOI
11 Grunewald, K., Hirschberg, J. & Hagen, C. 2001. Ketocarotenoid biosynthesis outside of plastids in the unicellular green alga Haematococcus pluvialis. J. Biol. Chem. 276:6023-6029.   DOI
12 Gwak, Y., Hwang, Y. -S., Wang, B., Kim, M., Jeong, J., Lee, C. -G., Hu, Q., Han, D. & Jin, E. 2014. Comparative analyses of lipidomes and transcriptomes reveal a concerted action of multiple defensive systems against photooxidative stress in Haematococcus pluvialis. J. Exp. Bot. 65:4317-4334.   DOI
13 Han, D., Wang, J., Sommerfeld, M. & Hu, Q. 2012. Susceptibility and protective mechanisms of motile and nonmotile cells of Haematococcus pluvialis (Chlorophyceae) to photooxidative stress. J. Phycol. 48:693-705.   DOI
14 Lohscheider, J. N. & Rio Bartulos, C. 2016. Plastoglobules in algae: a comprehensive comparative study of the presence of major structural and functional components in complex plastids. Mar. Genomics 28:127-136.   DOI
15 Holtin, K., Kuehnle, M., Rehbein, J., Schuler, P., Nicholson, G. & Albert, K. 2009. Determination of astaxanthin and astaxanthin esters in the microalgae Haematococcus pluvialis by LC-(APCI) MS and characterization of predominant carotenoid isomers by NMR spectroscopy. Anal. Bioanal. Chem. 395:1613-1622.   DOI
16 Imamoglu, E., Dalay, M. C. & Sukan, F. V. 2009. Influences of different stress media and high light intensities on accumulation of astaxanthin in the green alga Haematococcus pluvialis. N. Biotechnol. 26:199-204.   DOI
17 Kobayashi, M., Kakizono, T. & Nagai, S. 1993. Enhanced carotenoid biosynthesis by oxidative stress in acetateinduced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl. Environ. Microbiol. 59:867-873.   DOI
18 Kobayashi, M., Kakizono, T., Nishio, N., Nagai, S., Kurimura, Y. & Tsuji, Y. 1997. Antioxidant role of astaxanthin in the green alga Haematococcus pluvialis. Appl. Microbiol. Biotechnol. 48:351-356.   DOI
19 Kobayashi, M. & Sakamoto, Y. 1999. Singlet oxygen quenching ability of astaxanthin esters from the green alga Haematococcus pluvialis. Biotechnol. Lett. 21:265-269.   DOI
20 Lorenz, R. T. & Cysewski, G. R. 2000. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 18:160-167.   DOI
21 Shanmugabalaji, V., Besagni, C., Piller, L. E., Douet, V., Ruf, S., Bock, R. & Kessler, F. 2013. Dual targeting of a mature plastoglobulin/fibrillin fusion protein to chloroplast plastoglobules and thylakoids in transplastomic tobacco plants. Plant Mol. Biol. 81:13-25.   DOI
22 Naguib, Y. M. 2000. Antioxidant activities of astaxanthin and related carotenoids. J. Agric. Food Chem. 48:1150-1154.   DOI
23 Ota, S., Morita, A., Ohnuki, S., Hirata, A., Sekida, S., Okuda, K., Ohya, Y. & Kawano, S. 2018. Carotenoid dynamics and lipid droplet containing astaxanthin in response to light in the green alga Haematococcus pluvialis. Sci. Rep. 8:5617.   DOI
24 Rottet, S., Besagni, C. & Kessler, F. 2015. The role of plastoglobules in thylakoid lipid remodeling during plant development. Biochim. Biophys. Acta 1847:889-899.   DOI
25 Steinmuller, D. & Tevini, M. 1985. Composition and function of plastoglobuli. Planta 163:201-207.   DOI
26 Wayama, M., Ota, S., Matsuura, H., Nango, N., Hirata, A. & Kawano, S. 2013. Three-dimensional ultrastructural study of oil and astaxanthin accumulation during encystment in the green alga Haematococcus pluvialis. PLoS ONE 8:e53618.   DOI
27 Tripathi, U., Sarada, R., Rao, S. R. & Ravishankar, G. A. 1999. Production of astaxanthin in Haematococcus pluvialis cultured in various media. Bioresour. Technol. 68:197-199.   DOI
28 Vidi, P. -A., Kessler, F. & Brehelin, C. 2007. Plastoglobules: a new address for targeting recombinant proteins in the chloroplast. BMC Biotechnol. 7:4.   DOI
29 Vishnevetsky, M., Ovadis, M. & Vainstein, A. 1999. Carotenoid sequestration in plants: the role of carotenoidassociated proteins. Trends Plant Sci. 4:232-235.   DOI
30 Wang, B., Zarka, A., Trebst, A. & Boussiba, S. 2010. Astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae) as an active photoprotective process under high irradiance. J. Phycol. 39:1116-1124.   DOI
31 Ytterberg, A. J., Peltier, J. -B. & van Wijk, K. J. 2006. Protein profiling of plastoglobules in chloroplasts and chromoplasts: a surprising site for differential accumulation of metabolic enzymes. Plant Physiol. 140:984-997.   DOI
32 Yuan, J. -P. & Chen, F. 2000. Purification of trans-astaxanthin from a high-yielding astaxanthin ester-producing strain of the microalga Haematococcus pluvialis. Food Chem. 68:443-448.   DOI
33 Ambati, R., Phang, S. M., Ravi, S. & Aswathanarayana, R. G. 2014. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications-a review. Mar. Drugs 12:128-152.   DOI