• 제목/요약/키워드: air-cooling heat sink

검색결과 79건 처리시간 0.027초

스트립휜 히트싱크의 냉각특성 (Cooling Characteristics of a Strip Fin Heat Sink)

  • 박철우;김현우;장충선;유갑종
    • 대한기계학회논문집B
    • /
    • 제29권1호
    • /
    • pp.16-26
    • /
    • 2005
  • Air-cooled heat sinks are employed in many electronic cooling applications since they provide significant heat transfer enhancement and operational flexibility. Strip-shaped fin heat sink is of interest and needs to be investigated as general cooling products for more applicability. The purposes of this study are to evaluate heat sink performance without bypass flow condition and to determine optimal heat sink geometries. The results show that the decreasing rate of thermal resistance of a heat sink decreases with increasing inlet air velocity, and the increasing rate of pressure drop increases with increasing inlet air velocity, but is not affected by input power. The increasing rate of optimal longitudinal fin spacing is larger than that of transverse fin spacing. The strip fin heat sink tested in this study showed better cooling performance compared to that of other plate fin type.matism. 2004; 50(11): 3504-3515.

PHP를 이용한 히트싱크의 냉각 성능에 관한 연구 (A Study on Cooling Performance of Heat Sink using Pulsating Heat Pip)

  • 최우석;김종수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2438-2443
    • /
    • 2007
  • In order to guarantee the performance of electronic products. It is needed to improve the cooling performance of heat sink. So this paper has been made to investigate the cooling performance for the aluminum heat sink using pulsating heat pipe(PHP). The pulsating heat pipe was used as a heat spreader. Working fluid was R-22. Heater (50 mm ${\times}$ 50 mm ${\times}$ 3mm) was attached to heat sink and it generated 30W, 60W, 80W, 100W. Heat sink was tested for forced convection with 1${\sim}$4m/s of inlet air velocity. And both type heat sinks were carried out by using CFD simulation. This study showed that pulsating heat pipe can be a good tool to improve cooling performance of heat sink.

  • PDF

익형 핀 히트싱크의 냉각특성 (Cooling Characteristics of Wing Fin Heat Sink)

  • 유갑종;박철우;장충선;김현우
    • 설비공학논문집
    • /
    • 제16권8호
    • /
    • pp.728-740
    • /
    • 2004
  • Heat sink has extended surface area for enhanced heat transfer. The enhanced convection heat transfer has been used widely, such as cooling electronic chips in the electronics industry. Heat sink usually requires an increase in the heat transfer and a decrease in the pressure drop, and must improve the performance in the flow field of industrial plants. In this study, wing fin heat sink was studied and tests were conducted in a rectangular cross sectional channel with wing fin heat sinks. The leading and trailing ends of a wing fin have a sharp edge, simulating the airfoil feature. Empirical correlations have been developed for wing fin heat sink types. And wing fin heat sinks have better cooling performance than elliptic fin and square fin types.

대용량 컨버터의 방열판 설계 (Heatsink Design of High Power Converter)

  • 김찬기
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권4호
    • /
    • pp.194-202
    • /
    • 1999
  • Various ways of designing heat sink are available for commercial high power converters and among them, the method of air cooling is the most popular and practical method than any other ones. In this paper, a practical method of cooling high power converter, which includes a method of reducing noise and vibration caused by the fan and a method of estimating the gap and contact resistances existing between the thyristor and heat sink, is presented. Finally, the heat transfer analysis and implementation methods of heat sink for high power converter is presented.

  • PDF

나노유체를 냉각유체로 사용하는 마이크로채널 히트 싱크의 냉각효율 (Cooling Performance of a Microchannel Heat Sink with Nanofluids)

  • 장석필
    • 설비공학논문집
    • /
    • 제17권9호
    • /
    • pp.849-854
    • /
    • 2005
  • In this paper, the cooling performance of a microchannel heat sink with nano-particle-fluid suspensions ('nanofluids') is numerically investigated. By using theoretical models of thermal conductivity and viscosity of nanofluids that account for the fundamental role of Brownian motion respectively, we investigate the temperature contours and thermal resistance of a microchannel heat sink with nanofluids such as 6nm copper-in-water and 2nm diamond-in-water. The results show that a microchannel heat sink with nanofluids has high cooling performance compared with the cooling performance of that with water, the classical coolant. Nanofluids reduce both the thermal resistance and the temperature difference between the heated microchannel wall and the coolant.

승용 전조등 LED 램프의 방열판 자연 냉각특성 (Natural Cooling Characteristics of a Heat Sink for LED Headlight used in Passenger Cars)

  • 유재용;박설현
    • 한국기계가공학회지
    • /
    • 제16권2호
    • /
    • pp.142-148
    • /
    • 2017
  • The objective of this study is to investigate the cooling characteristics of a heat sink for an LED headlight used in passenger cars. To this end, this study conducts the experimental and numerical analysis of the heat sink heated at constant heat fluxes without air flow applied. In the experiments, heat was transferred at a constant heat flux through the bottom of a heat sink. The measured temperature on pre-selected locations of the heat sink was in good agreement with the numerically predicted one. The experimental and numerical results indicate that the convective heat transfer coefficient for the natural convection mode was decreased by increasing the heat flux applied to the bottom of heat sink, lowering the cooling capabilities.

LED 프로젝터 방열용 히트싱크의 성능평가 (Performance Evaluation of Heat Sink for Cooling of LED Projector)

  • 이경용;최영석;전동순;김선창;손광은
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1167-1171
    • /
    • 2008
  • The flow and thermal performance of the skiving and louver fin type heat sinks for the cooling system of the small LED projector were experimentally evaluated. A small fan tester based on AMCA standards was used to control and measure the air flow rate into the heat sink. Three heat blocks were used to simulate the heat and light sources(red, green and blue) of the small LED projector. We measured the pressure drop, temperatures and input power at the specific air flow rate and discussed those results. As a result, it is found that the louver fin type heat sink has higher pressure drop and lower thermal resistance than the skiving type. From the comparison of the temperature of the heat block between skiving and louver fin type, the louver fin type heat sink was found to be more suitable for cooling the high power heat source than skiving type. The thermal performance of the fan-sink(louver fin type) system was discussed with the picture taken by a thermal video.

  • PDF

강제대류에 의한 자동차용 램프 방열판의 냉각 특성에 LED 관한 연구 (A Study on Cooling Characteristics of the LED Lamp Heat Sink for Automobile by Forced Convection)

  • 양호동;유재용;박설현
    • 한국기계가공학회지
    • /
    • 제17권6호
    • /
    • pp.117-123
    • /
    • 2018
  • Automotive headlamps have been continuously developed as one of the most important devices for securing the driver's view, and the LED lamps are getting popular in recent years. However, in case of the LED lamps, because the heat generated by the LED lamps are too high, it shorten the product life and lower the LED efficiency. Therefore, this study was investigated the cooling characteristics of the LED lamp heat sink for automobile by forced convection for LED heat generation control. In order to analyze the cooling characteristics of the heat sink, the temperature distribution results were investigated through the experiment and computational analysis under the increase of the air flow velocity, and the convective heat transfer coefficient was obtained. Also, convective heat transfer coefficient was calculated by the theoretical formula under the same condition and compared with experimental and computational results. From the result of this study, as the air flow velocity around the heat sink fins increased, the convective heat transfer coefficient significantly increased, confirming the improvement in the cooling effect.

CPU 히트싱크에서 핀의 배열이 냉각성능에 미치는 영향에 대한 수치해석 (A Numerical Study on the Effect of Fin-array of Heat-sink on the Cooling Performance of CPU)

  • 김성찬;김건국;전병진;최형권
    • 반도체디스플레이기술학회지
    • /
    • 제15권3호
    • /
    • pp.12-17
    • /
    • 2016
  • In this study, numerical simulations for the conjugate heat transfer of air with a heat-sink of CPU were conducted. The heat-sink consisted of many fins of cylinder shape and the effect of the number of fins on the cooling performance of the heat sink was investigated. Grid independent solutions were obtained to compare the maximum temperature of the heat-sink for various conditions. It was found that maximum temperature of the heat-sink asymptotically approached 310K as the number of fins went to infinity. The energy exchange of air with the heat-sink was found to be nearly independent on the number of fins.

전자기기 냉각용 압전팬의 열전달 향상 (Heat Transfer Enhancement of a Piezoelectric Fan for Cooling of Electronic Devices)

  • 김은필;윤정인
    • 동력기계공학회지
    • /
    • 제18권1호
    • /
    • pp.14-21
    • /
    • 2014
  • Piezoelectric fans are thin elastic beams whose vibratory motion is actuated by means of a piezoelectric material bonded to the beam. These fans have found use as a means to enhance convective heat transfer while requiring only small amounts of power. This study presents new types of models with heat sink having air passage and investigates experimentally their heat transfer characteristics. From the comparison results for four models, the heat transfer coefficients of model 1 are approximately 44~66% higher than those of the reference model 0. The model 1 show the best overall performance about heat transfer and cooling capability. As shown in above results, it is necessary to design the heat sink with air pass for cooling of electronic devices, in order to increase the convective heat transfer coefficient of a piezoelectric fan for electronic cooling.