Browse > Article

Cooling Performance of a Microchannel Heat Sink with Nanofluids  

Jang, Seok-Pil (School of Aerospace and Mechanical Engineering, Hankuk Aviation University)
Publication Information
Korean Journal of Air-Conditioning and Refrigeration Engineering / v.17, no.9, 2005 , pp. 849-854 More about this Journal
Abstract
In this paper, the cooling performance of a microchannel heat sink with nano-particle-fluid suspensions ('nanofluids') is numerically investigated. By using theoretical models of thermal conductivity and viscosity of nanofluids that account for the fundamental role of Brownian motion respectively, we investigate the temperature contours and thermal resistance of a microchannel heat sink with nanofluids such as 6nm copper-in-water and 2nm diamond-in-water. The results show that a microchannel heat sink with nanofluids has high cooling performance compared with the cooling performance of that with water, the classical coolant. Nanofluids reduce both the thermal resistance and the temperature difference between the heated microchannel wall and the coolant.
Keywords
Nanofluids; Microchannel heat sink; Thermal resistance;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Davalos-Orozco, L. A. and Del Castillo, L. F., 2002, Hydrodynamic behavior of suspensions of polar particles: in Encyclopedia of surface and colloid science, Marcel Dekker, New York, pp. 2375-2396
2 Min, J. Y., Jang, S. P. and Kim, S. J., 2004, Effect of tip clearance on the cooling performance of a microchannel heat sink, Int. J. Heat Mass Transfer, Vol. 47, pp. 1099-1103   DOI   ScienceOn
3 Jang, S. P. and Choi, S. U. S., 2004, Role of Brownian motion in the enhanced thermal conductivity of nanofluids, Appl. Phys. Lett., Vol. 84, pp.4316-4318   DOI   ScienceOn
4 Smith, J. M. and Van Ness, H. C., 1987, Introduction to chemical engineering thermo dynamics, McGraw Hill, New York
5 Jang, S. P. and Choi, S. U. S., 2004, Free convection in rectangular cavity (Benard Convection) with nanofluids, IMECE2004-61054, Anaheim, USA
6 Wang, X., Xu, X. and Choi, S. U. S., 1999, Thermal conductivity of nanoparticle-fluid mixtures, J. Thermophysics and Heat Transfer, Vol. 13, pp.474-480   DOI
7 Lee, S., Choi, S. U. S. and Eastman, J. A, 1999, Measuring thermal conductivity of fluids containing oxide nanoparticles, ASME J. Heat Transfer, Vol. 121, pp.280-289   DOI
8 Das, S. K., Putra, N., Thiesem, P. and Roetzel, W., 2003, Thermal conductivities of naked and monolayer protected metal nanoparticle base nanofluids: Manifestation of anomalous enhancement and chemical effects, Appl. Phys. Lett., Vol. 83, pp.2931-2933   DOI   ScienceOn
9 Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E. and Grulke, E. A., 2001, Anomalous thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett., Vol. 79, pp. 2252-2254   DOI   ScienceOn
10 Eastman, J. A., Choi, S. U. S., Yu, W. and Thompson, L. J., 2001, Anomalously increased effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett., Vol. 78, pp. 718-720   DOI   ScienceOn
11 Einstein, A., 1956, Investigation on the theory of Brownian movement, Dover, New York
12 You, S. M., Kim, J. H. and Kim, K. H., 2003, Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer, Appl. Phys. Lett., Vol. 83, pp.3374-3376   DOI   ScienceOn
13 Jang, S. P., 2004, Thermal conductivitis of nanofluids, Trans. KSME B, Vol. 28, pp. 968-975   DOI