• Title/Summary/Keyword: air tightness

Search Result 121, Processing Time 0.033 seconds

Analysis on Energy Demand Resulting From the Change in Window Area & Installation of Interior Exterior Blinds (기존 노후건축물의 최적 리모델링 개선안 연구)

  • Kim, Dae-Won;Chung, Kwang-Seop;Kim, Young-Il;Nam, Ariasae;Oh, Se Min
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.207-216
    • /
    • 2014
  • The energy loss can be divided into the loss caused by heat transfer and the loss caused by air flow. Heat transfer is the loss resulting from the heat transmittance of external wall, roof, and floor, and represents one of the most vulnerable elements of existing buildings. To prevent such loss, it is necessary to increase the mean heat transmittance of entire external wall, including the window, to a level above the standard regional value and ensure the air-tightness of window. The old buildings have the structure which is prone to the loss of greater air flow due to the air infiltration through the exit/entrance door upward along the stairway by the stack effect and simultaneous suction of air from each floor, and becomes even vulnerable to the loss of heat insulation for each floor, although the external wall and windows are the most vulnerable parts. The improvement plans for each floor need to be submitted in tandem with the diagnosis of whole building, regarding the diagnosis plan and energy improvement measures based on the survey of site, rather than adhering to the misconception that the replacement of window alone will result in energy-savings.

Development of Pressure Correction System for Surface Vessel to Ensure Reliability of Compartment Test Result (수상함 격실기밀시험 결과의 신뢰성 확보를 위한 압력 보정 시스템 개발)

  • Min, Il-Hong;Kim, Jun-Woo;Son, Gi-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.409-414
    • /
    • 2021
  • Tightness performance that blocks compartments is important for surface ships to achieve superior mission performance and survivability in combat environments. To meet the above requirements, airtightness of the structural elements and the appropriate strength to specific areas are checked during a test run after ship construction. In particular, air tests of compartments adjacent to the water surface are performed. In an air test, air is injected into the compartment up to the test pressure of the test memo. The pressure drop value is checked after 10 minutes to determine if the requirements of the corresponding area are satisfied. In summer, however, when the influence of the outside temperature is large, a phenomenon in which the internal pressure increases during the air test was identified. This phenomenon reduces the reliability of the test result. Therefore, a system was designed to compensate for temperature changes in the compartments through this study. The developed system calculates the amount of pressure change caused by a temperature change in the compartment and outputs a correction value. The pressure change was calculated using the ideal gas equation, reflecting the maintenance, increase, and decrease in temperature during the test process. A comparison of the calculated pressure correction value with the database of NIST REFPROP revealed a difference of 0.126% to a maximum of 0.253%.

An Evaluation of Aerobic Exercise Wear Mobility as a Basic Criterion for Universal Design (에어로빅복의 유니버설 디자인을 위한 동작 적합성 평가)

  • Sohn, Ju-Hee;Choi, Jeong-Wha;Kang, Tae-Jin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.3 s.162
    • /
    • pp.343-350
    • /
    • 2007
  • This study compared and studied the clothing mobility of two types of aerobic clothes - those made of currently popular stretch materials and those made of new stretch materials that were specially developed for this study. The focus of the comparison was on the range of joint movement during activity, and the physiological burden imposed on the body by the clothes. In total, 18 experiments were carried out under controlled conditions in an artificial climatic chamber with a temperature of $25{\pm}1^{\circ}C$, air humidity of $60{\pm}5^{\circ}C$ and negligible air movement. Each exercise program consisted of a 30-minute of aerobic workout and a 20-minute rest following the exercise. Measurements were taken to determine the following: physiological reactions (whole-body and local sweat rates), subjective sensations(of temperature, humidity, comfort, tightness, and clothing wetness), joint angle(measured with a goniometer), and so on. The results of the study us as follows: Material B excels in clothing mobility. Material C excels in sweat absorbency and drying speed. Material A was found to be the hottest material, while material C was found to be slightly hot through the analysis of the change in pre- and post-exercise bodyweight(= amount of sweat). Regarding the amount of evaporated sweat, material A>material C>material B. Material B produced the smallest amount of evaporated sweat. The wider the range of joint movement, the smaller the amount of sweat and the lower the average skin temperature.

Thermal Resistance and Condensation in the Light-frame Timber Wall Structures with Various Composition of Insulation Layers

  • Jang, Sang Sik;Lee, Hyoung Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.533-542
    • /
    • 2019
  • As energy costs increase, more people has become interested on energy efficiency and savings in residential buildings. The two main subjects related to energy in residential buildings are insulation and condensation. There are two approaches to prevent condensation; increasing air tightness and maintaining the temperature inside of the wall structure over the dew point, which is in turn related to insulation. Even though the Korean government has highlighted the importance of energy efficiency for residential housings, and in spite of the customers' demands, the timber construction industry is still using conventional light-frame construction without even trying to improve energy efficiency. In this study, various types and combinations of wall structures were tested under cold outdoor and warm indoor temperatures to analyse the temperature gradients and to determine the possible sites of condensation in the wall structures. In addition to the experimental tests, three theoretical models were developed and their estimations of temperature change through the wall structure were compared with the actual measurements to evaluate accuracy of the models. The results of the three models agree relatively well with the experimental values, indicating that they can be used to estimate temperature changes in wall structures. The theoretical analysis of different insulation layers' combinations show that condensation may occur within the mid-layer in the conventional light-frame wall structures for any combination of inner-, mid-, and outer-layers of insulation. Therefore, it can be concluded that the addition of an inner and outer insulation layer or increasing the thickness of insulation may not be adequate to prevent condensation in the wall structure without preventing penetration of warm moist air into the wall structure.

Study on establishment of emission cell test method for liquid phase building materials (방출셀을 이용한 액상건축자재 오염물질 방출시험방법 정립에 관한 연구)

  • Lim, Jungyun;Jang, Seongki;Seo, Sooyun
    • Analytical Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.191-200
    • /
    • 2009
  • The aim of this study was to evaluate and establish of emission test method for liquid phase building materials such as paint, adhesive, sealant by emission cell. A small-scale emission chamber and emission cell were used to evaluate emission of TVOC from paint, adhesive, sealant. The quantity of TVOC emission were measured by a gas chromatography/mass spectrometry (GC/MS). Background concentration of TVOC was below $10{\mu}g/m^3$ in the emission chamber and cell. Air tightness and recovery in chamber and cell showed good results. The recovery of thermal desorber for toluene and n-dodecane were about 120%. The repeatability of response factor and retention time in GC/MS below 30%. The method detection limit of VOCs ranged 0.04~8.82 ng. The concentration of TVOC emission using emission cell was 1.35~1.41 times higher than emission chamber. The correlation of TVOC emission using chamber and cell method was significantly high (r=0.91~0.97).

Analysis of the Edge Sealing Strength for Vacuum Glass Panel Using Design of Experiment (실험계획법을 이용한 진공유리 패널 모서리 용융 접합 강도실험 분석)

  • Kim, Seung-Jong;Jeon, Euy-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.1819-1824
    • /
    • 2014
  • The vacuum-glazing panel is a panel that keeps two glasses completely sealed in a vacuum condition. It is the high function insulation material of having the wall level minimizing the heat loss by the conduction and convection heat transmission coefficient. The edge sealing is a very important process of vacuum glass on the strength, thickness and air tightness. In this study, by using the hydrogen mixture gas torch, two sheets of glass was sealing in the furnace. The thickness and strength of the glass according to the process parameters is measurement and analysis, and predicting the edge sealing strength of glass by using taguchi method of experiment. We verified the validity of the experiment by checking the error rate through additional experiment.

Nonlinear Analysis of Rubber Bellows for the High Speed Railway Vehicle (고속철도차량 갱웨이 벨로우즈의 비선형 해석)

  • Kang, Gil-Hyun;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.3631-3637
    • /
    • 2013
  • Gangway bellows in this study is the double wrinkled neoprene rubber component to accept various deviations between the carriage end parts of the articulated type high speed railway vehicle(HSRV). The fatigue failure of the bellows has a harmful effect on the riding comfort for the passengers with the increase of noise and ringing in the ears due to air-tightness failure during pass through a long tunnel. In this study, to assure the safety of gangway bellows of the HSRV, non-linear analysis of the gangway bellows considering triaxial angular displacement(rolling /yawing/pitching) between the carriage end parts are performed. The non-linear properties of the rubber are determined by uniaxial tension and equi-biaxial tension test. Moreover, from the results of non-linear analysis, the effects of the angular displacements and frictional coefficients are evaluated.

A Study on Formality and Symbolism in Black Dress (흑색의상의 조형성과 상징성에 관한 연구)

  • 곽혜선;금기숙
    • Journal of the Korean Society of Costume
    • /
    • v.37
    • /
    • pp.231-252
    • /
    • 1998
  • Since the costume directly express human mental and emotional status, colors of costume can be valuable data to grasp the spirit of the times. Black is noticeably used in modern fashion and the study for black costume is very useful to understand modern fashion. There-fore the study mainly approaches the black costume, finding its background of appearance and symbolism, reviews the symbolism and formality of black expressed in the field of paint-ing and design beyond the fashion, and compar-es to fashion. The study result of the thesis is as follows ; First, black as a color is a one to light other neighboring colors, while it is a static, con-tractible and outstandigly attractived color. Second, black color traditionally symbolizes death, earth, air, North and inferior level and in the painting, it symbolized death, despair, fantastic world and the expression of pent-up self, while cities have been symbolized in the black printing in modern times. In the design, black has appeared with the industrial society, which symbolizes functionality and modernity. Third, black in the fashion design was symbolized death, sternness simplicity, modernity, sex, resistance and so on. Death became conspicious by a religious factor since the old times, sternness was influenced by Spanish fashion in the 16th century, simplicity by Dutch fashion in the 17th century and modernity by Baudelaire dandyism and Chanel little black dress, while sex and resistance were urged to the modern times by teenage inferior culture and stickiness to sex. Fourth, the formative features of black costume prefer simplicity, tightness and bareness in form, and in material, usually used glancing materials changed by the effect of light, lace, see-through fabric and matte one with depth. As a result, the black color is summarized to symbol death, expression of self and modernity. It is not a color of emotion but of mentality and artificial one against nature. Black color in fashion gets a strong power to express self in the symbolic aspect and draws a higher attention on human body than the fashion itself. By these features, black costume will be continuously prefered in spite of changes of the fashion.

  • PDF

A Study on Safety Performance Evaluation of NG Blower for 5 kW Class Stationary Fuel Cell Systems (5 kW급 건물용 연료전지 시스템 연료승압 블로워 안전 성능 평가에 관한 연구)

  • BAEK, JAE-HOON;LEE, EUN-KYUNG;LEE, JUNG-WOON;LEE, SEUNG-KUK;MOON, JONG-SAM;KIM, KYU-HYUNG;PARK, HAN-WOO;KIM, DONG-CHEOL;LEE, JIN-HEE
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.6
    • /
    • pp.675-682
    • /
    • 2017
  • New government, the market for stationary fuel cell systems in domestic is expected to expand in line with the policy for expanding new and renewable energy. In order to promote and expand the domestic market for stationary fuel cell systems, it is required to do research and develop for cost reduction and efficiency improvement technologies through the localization of BOP. In this study, the safety performance including the power consumption, flow rate, noise and air-tightness of the domestic fuel booster blower and the foreign fuel booster blower was evaluated and the performance improvement of the domestic blower was confirmed. As a result of the power consumption measurement and the flow rate according to the back pressure of the A company 2nd prototype and B company, the values were 73 W, 27 LPM, and 55 W, 25 LPM. These results are attributed to the improvement of performance through design changes such as CAM angle and diaphragm material.

A Study on Development of Automatic Path Tracking Algorithm for LNG Aluminium Plate and Selection of Process Parameters by Using Artificial Intelligence (LNG 알루미늄 판재 가공용 자동 궤적 추적 알고리즘 개발 및 인공지능을 이용한 공정조건 선정에 관한 연구)

  • 문형순;권봉재;정문영;신상룡
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.17-25
    • /
    • 1998
  • Aluminum alloys have low density, relatively high strength and yield strength, good plasticity, good machinability, and high corrosion and acid resistance. Therefore, they are suitable for large containers for the food, chemical and other industries. Large containers are often bodies of revolution consisting of shell courses, stiffening rings, heads and other elements joined by annular welds. Larger containers have longer welds and require greater leak-tightness and higher weld mechanical properties. The LNG tank consists of aluminum plates with various sizes, so its construction should by divided by several sections. Moreover, each section has its own sub-section consisted of several aluminum plates. To guarantee the quality of huge LNG tank, therefore, the precise control of plate dimension should by urgently needed in conjunction with the appropriate selection of process parameters such as cutting speed, depth of cut, rotational speed and so on. In this paper, a manufacturing system was developed to implement automatic circular tracking in height direction and automatic circular interpolation in depth of cut direction. Also, the neural network based on the backpropagation algorithm was used to predict the cutting quality and motor load related with the life time of the developed system. It was revealed that the manufacturing system and the neural network could be effectively applied to the bevelling process and to predict the quality of machined area and the motor load.

  • PDF