• Title/Summary/Keyword: air tightness

Search Result 121, Processing Time 0.023 seconds

Developing the Construction Guideline for ZEB Based on Air-tightness of Public Buildings in Korea (국내 비주거용 건물의 기밀성능 측정 결과를 통한 기밀 시공 가이드라인 개발)

  • Bae, Minjung;Choi, Gyeongseok
    • Land and Housing Review
    • /
    • v.11 no.3
    • /
    • pp.69-74
    • /
    • 2020
  • Since the design Standard for Energy Conservation in Building was implemented in 2008 for the first time, building elements such as window and door should satisfy the minimum criteria to apply for a building. Though its regulation does not cover the whole building yet, recent demand to reduce energy consumption in building sector grows rapidly year by year and also draws a lot of interest to ensure the whole building level. For example, a Zero energy building, one of low-energy buildings, requires a customized solution to resolve the air leakage issue to meet the standards in achieving the high level of air tightness. In this study, six non-residential buildings were tested by fan pressurization method to observe the air tightness of whole building to suggest the construction guideline for air tightness of low-energy building. Five out of six tested buildings showed 0.27 to 1.16 h-1 of number of air changes except one community center. These buildings were carefully constructed not only for building planning but also for parts where there was a concern of air leakage, thereby securing high levels of air-tightness. The construction skills were developed as a checklist to manage and supervise the construction site. It is our suggestion to use this checklist at construction sites for ZEB with the high level of air-tightness.

A Study on Estimation of Air Tightness for Train (철도차량의 공기압 기밀도 평가에 관한 연구)

  • Nam, Seong-won
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.5
    • /
    • pp.576-584
    • /
    • 2016
  • In this study, we measured the air tightness of a train using pressure variation in tunnels. To estimate the air tightness of a train is essential to comprehend the pressure variation of the cabin because air tightness is strongly related with ear discomfort. If we can determine the air tightness, we can predict the pressure variation of the cabin. Also, ear discomfort is a problem that can be caused in a high speed train, as well as in Korea's Great Train Express. In this study, we compared the various international standards for ear discomfort and estimated the air tightness of each vehicle based on experimental data obtained using the ITX, KTX and KTX-sancheon(honam) vehicles. The internal pressure variation of the trains is numerically calculated using the air tightness value. The results are good compared to the experimental results. Instead of flap type ventilation, in the future, continuous ventilation equipment will be needed for speed-up.

The Air Leakage Characteristics and Airtightness Performance of a Newly Built Apartment (신축 공동주택의 누기특성 및 기밀성능 분석에 관한 연구)

  • Lee, Yun Gyu;Shin, Cheol Woong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.11
    • /
    • pp.606-611
    • /
    • 2013
  • In responding to the recent framework convention on climate change, and the rise of the need for energy efficient buildings, such as Zero Energy Buildings (ZEB), domestic insulation standards and energy conservation regulations are being reinforced, to prevent heat loss. Accordingly, the Ministry of Land, Infrastructure and Transport have made amendments in Chapter 21 "Enforcement regulations for building facilities standards etc.", and Chapter 22 "Energy conservation standard", to reflect these changes. To effectively implement these regulations, it is required to propose air-tightness test methods, and establish air-tightness standards, based on the air leakage characteristics of domestic apartment housings. This research has been done primarily to collect basic technical data, to provide guidance for the establishment of domestic air-tightness standards for new apartment housing, through studying air-tightness test methods, field measurement on air-tightness of new apartment housings, and air leakage characteristics of major developed countries.

Consideration of Heat Recovery Ventilator from Ventilating Standpoint (환기관점에서 본 열교환 환기유니트)

  • Song, Jun-Won;Kang, Il-Kyung;Kim, Tae-Hee;Shin, Yong-Sup;Park, Jae-Sung;Choi, Won-Young
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.417-422
    • /
    • 2006
  • On trends of 'well-being', heat recovery ventilators(HRV) are recently installed in high rise buildings. HRV is not energy saving instrument but ventilating one. But many people have not been aware of the accurate fact. In this study, performances of HRV are tested under foreign and domestic standards. Especially air-tightness is measured three times by using gas concentration method and pressing equipment. Wet effective ventilating air volume is acquired by solving gas concentration equations. After research air-tightness and effective ventilating air volume must be more focused on than heat transfer efficiency to select the optimal HRV. Heat transfer efficiency must be adjusted by air-tightness results.

  • PDF

The Design of Vehicle for Air tightness to Pressure wave of High Speed Train (고속전철의 압력파 영향에 대한 차체 기밀설계)

  • 박광복;김현철
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.83-94
    • /
    • 1999
  • This study is about design of vehicle for air tightness to pressure waves of high speed train. When the train runs to high speed over 300km/h, the comfort of passenger come down due to difference pressure between inside and outside of passenger room. The car-body was carried out the design of air-tightness, and the analysis of inside pressure of vehicle in tunnel by TG_TUN of ALSTOM Co. The result of analysis should be used the design of air pressurized system and car-body of G7 high speed train project.

  • PDF

An Experimental Test for Air-tightness Performance Evaluation of Cracked Concrete Vacuum Tube Structures (콘크리트 진공튜브의 균열 발생에 따른 기밀성능 평가 실험)

  • Park, Joonam;Park, Hyeong-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.377-385
    • /
    • 2018
  • Super-speed vacuum tube system, where the air resistance is minimized to obtain high speed of the vehicle, is considered to be a viable alternative transportation system. Air-tightness is one of the most important design requirements of the system, because the internal pressure of the system needs to be maintained significantly lower than the atmospheric pressure. This study performed an experimental test, where a series of concrete tube specimens were applied by external loads to induce cracks and the effective air-permeability of the cracked tube structures were measured. The test results indicates that the information on the length and the width of the load-induced cracks are not enough to anticipate the system air-tightness, whereas the load-induced displacement has higher correlation with the systems air-tightness. Based on these results, a direction of future research for effect of the load-induced cracks on the system air-tightness is suggested.

Revise the Value of Simulation on Thermal Performance Depending on Air-tightness Performance Classified by Opening Type of Windows (창의 개폐방식별 기밀성능에 따른 단열성능 시뮬레이션 보정치 산출)

  • Lee, Jin-Sung;Cho, Soo;Sohn, Jang-Yeul
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.4
    • /
    • pp.68-75
    • /
    • 2008
  • The purpose of this research is revise the value yield to compensate of measure the difference between computer simulation and the measurement value on the two methods which can calculates thermal performance. The way is need to understand about thermal performance, air tightness, simulations and comparisons of analysis to influence the value of each identified. The opening type of the windows and doors to be used at the analysis are T/T, L/S and SL Different condition of the windows and doors excluded except the opening type. Each of the four samples was selected by the way of opening. Result of the analysis of the difference between measurement and simulation are that T/T approach 5.3%, L/S approach 15.7%, SL approach 21% and the more air-tightness guarantees less difference of the numerical value. Each compensation value calculates by the correlation regression analysis and the air-tightness data. After the compensation of the resulting difference in T/T, L/S, SL indicate 5.4%, 2.5%, 1.0% respectively.

Sensitivity Analysis of Design Parameters of Air Tightness in Underground Lined Rock Cavern (LRC) for Compressed Air Energy Storage (CAES) (복공식 지하 압축공기에너지 저장공동 기밀시스템 설계변수의 민감도 해석)

  • Kim, Hyung-Mok;Rutqvist, Jonny;Ryu, Dong-Woo;Sun-Woo, Choon;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.287-296
    • /
    • 2011
  • We performed a numerical modeling study of thermodynamic and multiphase fluid flow processes associated with underground compressed air energy storage (CAES) in a lined rock cavern (LRC). We investigated air tightness performance by calculating air leakage rate of the underground storage cavern with concrete linings at a comparatively shallow depth of 100 m. Our air-mass balance analysis showed that the key parameter to assure the long-term air tightness of such a system was the permeability of both concrete linings and surrounding rock mass. It was noted that concrete linings with a permeability of less than $1.0{\times}10^{-18}\;m^2$ would result in an acceptable air leakage rate of less than 1% with the operational pressure range between 5 and 8 MPa. We also found that air leakage could be effectively prevented and the air tightness performance of underground lined rock cavern is enhanced if the concrete lining is kept at a higher moisture content.

Field Measurements of Indoor Air Quality in Apartment Units at Medium-size Cities (중소도시 공동주택의 실내공기질(새집증후군) 실측에 관한 연구)

  • Yoon, JaeOck
    • KIEAE Journal
    • /
    • v.10 no.4
    • /
    • pp.81-86
    • /
    • 2010
  • The main sources of the new house syndrome(sometimes it called sick building syndrome) are a concentration of formaldehyde (HCHO) and a concentration of total volatile organic compounds(TVOC). I had field measurements of indoor air quality in the apartment unit at medium-size cities(Y city, C city). I measured indoor air temperature, HCHO concentration in 16 units, TVOC concentration in 6 units and air tightness in 7 units. And I measured outdoor air quality, HCHO concentration and TVOC concentration. Mean concentration of HCHO was $357{\mu}g/m^3$(2006 standard=$120{\mu}g/m^3$), mean concentration of TVOC was $3,092{\mu}g/m^3$ and mean effective air leakage area was 193 cm2. There was a close relation between the indoor air temperature and HCHO concentration, between the indoor air temperature and TVOC concentration. Air tightness also had relation.

Influence of Air-tightness on Heat Energy Performance in Post and Beam Building with Exposed Wood Frame

  • Kim, Hyun-Bae;Kim, Se-Jong;Oh, Jung-Kwon;Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.319-326
    • /
    • 2012
  • Han-green building is one of the modernized Korean traditional buildings developed by Korea Forest Research Institute. This building was developed to increase the competitiveness of Korean traditional building using state-of-art technologies; hence Han-green building has the inherent characteristics of traditional building such as exposed wood frame in wall. Because of discontinuity in wall by the exposed wood frame, there is a concern on heat-air leaking in terms of energy performance. In this study, air-tightness of Han-green building was evaluated to investigate the influence of gaps between frames and in-fill walls. Blower door test was carried out to evaluate the air-tightness, and air-change rate (ACH50) was evaluated by averaging four set of pressurization and depressurization test. The air-change rate of Han-green house was 5.91 $h^{-1}$. To improve energy performance of Han-green house, thermal infrared images of Han-green house were taken in winter with heating to find out where the heat loss occurred. It was found that the building lost more heat through gaps between frames and in-fill walls rather than through other parts of this building. After covering all the gaps by taping, the blower door test was performed again, and the air-change rate was improved to 5.25 $h^{-1}$. From this analysis, it was concluded that the heated air can leak through the gaps between frames and walls. Therefore, when one designs the post and beam building with exposed frame, the detail design between frame and wall needs to be carefully dealt. However, Han-green building showed relatively high air-tightness comparing with other country research results.