• 제목/요약/키워드: air oxidation

검색결과 952건 처리시간 0.024초

초고온가스로용 Alloy 617의 불순물 함유 헬륨/공기 중에서 고온부식 특성 (High Temperature Corrosion of Alloy 617 in Impure Helium and Air for Very High-Temperature Gas Reactor)

  • 정수진;이경근;김동진;김대종
    • Corrosion Science and Technology
    • /
    • 제12권2호
    • /
    • pp.102-112
    • /
    • 2013
  • A very high-temperature gas reactor (VHTR) is one of the next generation nuclear reactors owing to its safety, high energy efficiency, and proliferation-resistance. Heat is transferred from the primary helium loop to the secondary helium loop through an intermediate heat exchanger (IHX). Under VHTR environment Alloy 617 is being considered a candidate Ni-based superalloy for the IHX of a VHTR, owing to its good creep resistance, phase stability and corrosion resistance at high temperature. In this study, high-temperature corrosion tests were carried out at 850 - $950^{\circ}C$ in air and impure helium environments. Alloy 617 specimens showed a parabolic oxidation behavior for all temperatures and environments. The activation energy for oxidation was 154 kJ/mol in helium environment, and 261 kJ/mol in an air environment. The scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDS) results revealed that there were a Cr-rich surface oxide layer, Al-rich internal oxides and depletion of grain boundary carbide after corrosion test. The thickness and depths of degraded layers also showed a parabolic relationship with the time. A corrosion rate of $950^{\circ}C$ in impure helium was higher than that in an air environment, caused by difference in the outer oxide morphology.

Al 분말의 산화에 의한 $Al_2O_3$ 소결에 관한 연구 (A Study on alumina Sintering through the Oxidation of AI Powder.)

  • 박정현;안주삼;김해두
    • 한국세라믹학회지
    • /
    • 제19권3호
    • /
    • pp.179-186
    • /
    • 1982
  • This research is to aim at the study of sintering mechanism through the observation of microstructure by scanning electron microscopy, after the mixture of 30wt% $Al_2O_3$ (White Alundum) powder is fired in air at the temperature range of 1350~150$0^{\circ}C$ in order to sinter $Al_2O_3$-Al through the oxidation of Al powder. The results obtained in this experiment are as follows: 1. While the compressive strength of $Al_2O_3$(WA) body fired at $1450^{\circ}C$ for 5hrs in air is 150kg/$\textrm{cm}^2$, that of Al-$Al_2O_3$ body fired at 135$0^{\circ}C$, $1400^{\circ}C$ for 5hrs in air is 1100kg/$\textrm{cm}^2$, 1600kg/$\textrm{cm}^2$ respectively, and the higher the firing temperature, the more the compressive strength increases. These results from the sintering effect between $Al_2O_3$(WA) grains and surrounding Al-oxidation layer. 2. While the compressive strength of Al2O3(WA) body fired at 150$0^{\circ}C$ for 5hrs in air is 250kg/$\textrm{cm}^2$, the compressive strength of Al-$Al_2O_3$body fired under the same condition is 2050kg/$\textrm{cm}^2$ and water absorption 9.0%, porosity 23.3%, bulk density 2.60gr/$cm^3$. It is assumed that these results come from not only the grain growth of oxidized Al grains but also the increase of bonding strength between $Al_2O_3$(WA) grains.

  • PDF

3D 매트릭스 개질기를 활용한 모사 바이오가스 부분산화 및 수증기 영향 연구 (The Study of Effect of Steam on Partial Oxidation for Model Biogas using 3D Matrix Reformer)

  • 임문섭;전영남
    • 한국수소및신에너지학회논문집
    • /
    • 제22권6호
    • /
    • pp.772-779
    • /
    • 2011
  • New type of syngas generator based on the partial oxidation of biogas in volumetric permeable matrix reformers was suggested as an effective, adaptable and relatively simple way of syngas and hydrogen production for various low-scale applications. The use of biogas as an energy source reduces the chance of possible emission of two greenhouse gases, $CH_4$ and $CO_2$, into the atmosphere at the same time. Its nature of being a reproducible energy source makes its use even more attractive. Parametric screening studies were achieved as air ratio, biogas component ratio, input gas temperature, Steam/Carbon ratio. As the air ratio was low, the production of the hydrogen and carbon monoxide increased in the condition that 3D matrix reformer maintains the stable driving. As it was the simulation biogas in which the carbon dioxide content is high, the flammable range became narrow. And the flammable range was extended if the injected gas was preheated. The stable driving was possible in the low air ratio. The amount of hydrogen production was increased as S/C ratio increased.

대기 및 Ar-0.2%SO2가스에서 Inconel 740 합금의 고온부식 연구 (Study of High Temperature of Inconel 740 Alloy in Air and Ar-0.2%SO2 Gas)

  • 이동복;김민정
    • 한국표면공학회지
    • /
    • 제54권2호
    • /
    • pp.43-52
    • /
    • 2021
  • The Ni-based superalloy, Inconel 740, was corroded between 800 and 1100℃ for up to 100 hr in air and Ar-0.2%SO2 gas in order to study its corrosion behavior in air and sulfur/oxygen environment. It displayed relatively good corrosion resistance in both environment, because its corrosion was primarily dominated by not sulfidation but oxidation especially in Ar-0.2%SO2 gas. Such was attributed to the thermodynamic stability of oxides of alloying elements when compared to corresponding sulfides. The scales consisted primarily of Cr2O3, together with some NiAl2O4, MnCr2O4, NiCrMnO4, and rutile-TiO2. Sulfur from SO2 gas made scales prone to spallation, and thicker. It also widened the internal corrosion zone when compared to air. The corrosion resistance of IN740 was mainly indebted to the formation of protective Cr2O3-rich oxides, and suppression of the sulfide formation.

$LaCrO_3$가 분산된 Cr 합금의 구조 및 산화거동 (Structure and Oxidation Behavior of the $LaCrO_3$-dispersed Cr alloys)

  • 전광선;송락현;신동열;조중열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 D
    • /
    • pp.1303-1305
    • /
    • 1998
  • In order to reduce or avoid oxidation problem at operation the interconnects in SOFCs have so far mostly been made of ceramic material. It has high chemical stability both under cathode and anode condition, relatively thermal expansion coefficient that matchs that of electrolyte material YSZ. But this material shown rather weak in the low oxygen atmosphere and thermal shock, and it has lower mechanical strength than alloys. To avoid these problems one may consider to use metals or alloys as materials for interconnects. Metallic interconnects are advantageous because of their high thermal and electronic conductivities. But it has some problems, Those are high thermal expansion and oxidation at high temperature in air. To solve these problems in the interconnection material in this study, $LaCrO_3$-dispersed Cr alloys for metallic interconnector of SOFC have been investigated as a fuction of $LaCrO_3$ content in the range of 5 to 25 vol.%. The Cr alloy were prepared by mixing Cr and $LaCrO_3$ powders in high-energy ball mill for 48h and by sintering under Ar atmosphere with 5vol.% $H_2$ for 10h at $1500^{\circ}C$. The alloys had a relative density of 95% and above. The Cr alloys in composed of two kind of small $LaCrO_3$ and large Cr particles. As the $LaCrO_3$ content increased, the Cr particle size decreased but the $LaCrO_3$ particle size remained contant. Also the oxidation tests show that the $LaCrO_3$-dispersed Cr is very resistant to oxidation in air. These results means that $LaCrO_3$-dispersed Cr is a useful material for metallic interconnect of planar SOFC.

  • PDF

복합대기오염 저감 시스템을 위한 오존 고속산화 기반 고도산화공정 (An Ozone-based Advanced Oxidation Process for an Integrated Air Pollution Control System)

  • 엄성현;홍기훈;황상연
    • 공업화학
    • /
    • 제32권3호
    • /
    • pp.237-242
    • /
    • 2021
  • 미세먼지와 함께 질소산화물, 황산화물, 휘발성 유기화합물, 암모니아 비롯한 유발물질에 대한 동시 저감기술은 엄격해지는 환경규제와 실질적인 저감효과 제고를 위해 꾸준히 주목받아 왔다. 오존산화에 의한 비수용성 질소산화물 고속산화 공정은 전통적으로 적용되고 있는 선택적 촉매환원 공정에 비해 공간절약형 시스템 적용을 가능하게 할 뿐만 아니라 운영비용 절감 측면에서 매우 효과적인 방법으로 평가되고 있으며 황산화물을 비롯한 산성가스와 동시 저감이 가능한 공정 구현이 가능하다는 장점까지 있다. 본 논문에서는 오존 고속산화 공정에 대한 기술 이슈 및 개발 동향을 소개하며 향후 산업적 이용 확대를 위한 개발 방향에 대해서 고찰하고자 한다.

The Oxidation of Functionally Gradient NiCrAlY/YSZ Coatings

  • Park, K.B.;Park, H.S.;Kim, H.J.;Lee, D.B.
    • 한국표면공학회지
    • /
    • 제34권5호
    • /
    • pp.499-502
    • /
    • 2001
  • Functionally gradient NiCrAlY/$ZrO_2$-$Y_2$$O_3$ and NiCrAlY/$ZrO_2$- $CeO_2$-$Y_2$$O_3$ coatings were prepared by APS. The as-sprayed microstructure consisted of metal-rich and ceramic-rich regions, between which $Al_2$$O_3$-rich layers existed owing to the oxidation during APS. During oxidation between 900 and $1100^{\circ}C$ in air, the pre-existing $Al_2$$O_3$-rich scales grew, due mainly to the preferential reaction of Al with inwardly transporting oxygen along the heterogeneous phase boundaries. As the amount of ceramics in the coating increased, the oxidation resistance increased.

  • PDF

$Si_3N_4$의 산화반응 기구 (Oxidation Mechanism of $Si_3N_4$)

  • 이홍림;최태운;김종우
    • 한국세라믹학회지
    • /
    • 제17권4호
    • /
    • pp.197-202
    • /
    • 1980
  • The oxidation mechanism of the not sintered pellets and sintered bodies of $Si_3N_4$ was investigated. in air over the temperature range of 800~130$0^{\circ}C$. The $\beta$-cristobalite was instantaneously formed and covered the particles of powder packed in the not sintered and weakly sintered porous $Si_3N_4$ bodies by molecular diffusion of oxygen through the porous Si3N4 bodies and an immediate oxidation. The diffusion of oxygen ion through the formed $\beta$-cristobalite surface layer is assumed to control the further oxidation of the $Si_3N_4$ particles of the porous $Si_3N_4$ bodies. The diffusion coefficients and activation energies of oxygen ion through the $\beta$-cristobalite layer were obtained by the use of a derived equation.

  • PDF