Browse > Article
http://dx.doi.org/10.14478/ace.2021.1035

An Ozone-based Advanced Oxidation Process for an Integrated Air Pollution Control System  

Uhm, Sunghyun (Plant Process Development Center, Institute for Advanced Engineering)
Hong, Gi Hoon (Plant Process Development Center, Institute for Advanced Engineering)
Hwang, Sangyeon (Plant Process Development Center, Institute for Advanced Engineering)
Publication Information
Applied Chemistry for Engineering / v.32, no.3, 2021 , pp. 237-242 More about this Journal
Abstract
Simultaneous removal technologies of multi-pollutants such as particulate matters (PMs), NOx, SOx, VOCs and ammonia have received consistent attention due to the enhancement of pollutant abatement efficiency in addition to the stringent environmental regulation and emission standard. Pretreatment of insoluble NO by an ozone oxidation can be considered to be more effective route for saving space occupation as well as operation cost in comparison with that of traditional selective catalytic reduction (SCR) process. Moreover the primary advantage of ozone oxidation process is that the simultaneous removal with acidic gas including SOx is also available. Herein, we highlight recent studies of multi-pollutant abatement via ozone oxidation process and the promising research topics for better application in industrial sectors.
Keywords
Air pollution control; Ozone oxidation; Wet electrostatic precipitation; NOx; Particulate matters;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Plautz, Piercing the haze, Science, 361, 1060-1063 (2018).   DOI
2 Y-B. Zhao, P-P. Gao, W-D. Yang, and H-G. Ni, Vehicle exhaust: An overstated cause of haze in China, Sci. Total Environ., 612, 490-491 (2018).   DOI
3 F. Lin, Z. Wang, Z. Zhang, Y. He, Y. Zhu, J. Shao, D. Yuan, G. Chen, and K. Cen, Flue gas treatment with ozone oxidation: An overview on NOx, organic pollutants, and mercury, Chem. Eng. J., 382, 123030 (2020).   DOI
4 P. Cordoba, Status of flue gas desulphurisation (FGD) systems from coal-fired power plants: Overview of the physic-chemical control processes of wet limestone FGDs, Fuel, 144, 274-286 (2015).   DOI
5 S. Yang, X. Pan, Z. Han, D. Zhao, B. Liu, D. Zheng, and Z. Yan, Removal of NOx and SO2 from simulated ship emissions using wet scrubbing based on seawater electrolysis technology, Chem. Eng. J., 331, 8-15 (2018).   DOI
6 K. Skalska, J. S. Miller, and S. Ledakowicz, Trends in NO(x) abatement: A review, Sci. Total Environ., 408, 3976-3989 (2010).   DOI
7 Z. G. Lei, C. P. Wen, and B. H. Chen, Optimization of internals for selective catalytic reduction (SCR) for NO removal, Environ. Sci. Technol., 45, 3437-3444 (2011).   DOI
8 D. Q. Dao, L. Gasnot, K. Marschallek, A. El Bakali, and J. F. Pauwels, Experimental study of NO removal by gas re-burning and selective noncatalytic reduction using ammonia in a lab-scale reactor, Energ. Fuel, 24, 1696-1703 (2010).   DOI
9 E. Stamate, C. Irimiea, and M. Salewski, Investigation of NOx reduction by low temperature oxidation using ozone produced by dielectric barrier discharge, Jpn. J. Appl. Phys., 52, 05EE03 (2013).   DOI
10 Z-H. Xu, X. Xiao, Y. Jia, P. Fang, J-H. Huang, H-W. Wu, Z-J. Tang, and D-Y. Chen, Simultaneous removal of SO2 and NO by O3 oxidation combined with wet absorption, ACS Omega, 5, 5844-5853 (2020).   DOI
11 X. Zhang, B. Gao, A. E. Creamer, C. Cao, and Y. Li, Adsorption of VOCs onto engineered carbon materials: A review, J. Hazard. Mater., 338, 102-123 (2017).   DOI
12 C. Dai, Y. Zhou, H. Peng, S. Huang, P. Qin, J. Zhang, Y. Yang, L. Luo, and X. Zhang, Current progress in remediation of chlorinated volatile organic compounds: A review, J. Ind. Eng. Chem., 62, 106-119 (2018).   DOI
13 Y. S. Gao, Z. Zhang, J. W. Wu, L. H. Duan, A. Umar, L. Y. Sun, Z. H. Guo, and Q. Wang, A critical review on the heterogeneous catalytic oxidation of elemental mercury in flue gases, Environ. Sci. Technol., 47, 10813-10823 (2013).   DOI
14 B. Wu, H. Tian, Y. Hao, S. Liu, X. Liu, W. Liu, X. Bai, W. Liang, S. Lin, Y. Wu, P. Shao, H. Liu, and C. Zhu, Effects of wet flue gas desulfurization and wet electrostatic precipitators on emission characteristics of particulate matter and its ionic compositions from four 300 MW level ultralow coal-fired power plants, Environ. Sci. Technol., 52, 14015-14026 (2018).   DOI
15 R. Ji, J. Wang, W. Xu, X. Liu, T. Zhu, C. Yan, and J. Song, Study on the key factors of NO oxidation using O3: The oxidation product composition and oxidation selectivity, Ind. Eng. Chem. Res., 57, 14440-14447 (2018).   DOI
16 Z. Han, T. Zou, J. Wang, J. Dong, Y. Deng, and X. Pan, A novel method for simultaneous removal of NO and SO2 from marine exhaust gas via in-site combination of ozone oxidation and wet scrubbing absorption, J. Mater. Sci. Eng., 8, 943 (2020).
17 T-W. Chien and H. Chu, Removal of SO2 and NO from flue gas by wet scrubbing using an aqueous NaClO2 solution, J. Hazard. Mater., 80, 43-57 (2000).   DOI
18 M. S. Kang, J. Shin, T. U Yu, and J. Hwang, Simultaneous removal of gaseous NOx and SO2 by gas-phase oxidation with ozone and wet scrubbing with sodium hydroxide, Chem. Eng. J., 381, 122601 (2020).   DOI
19 Z. Han, J. Wang, T. Zou, D. Zhao, C. Gao, J. Dong, and X. Pan, NOx removal from flue gas using an ozone advanced oxidation process with injection of low concentration of ethanol: Performance and mechanism, Energ. Fuels, 34, 2080-2088 (2020).   DOI
20 P. Fang, C. Cen, Z. Tang, P. Zhong, D. Chen, and Z. Chen, Simultaneous removal of SO2 and NOx by wet scrubbing using urea solution, Chem. Eng. J., 168, 52-59 (2011).   DOI
21 J. Kuropka, Removal of nitrogen oxides from flue gases in a packed column, Environ. Prot. Eng., 37, 13-22 (2011).
22 https://csr.tsmc.com/csr/en/focus/greenManufacturing/airPollutionControl.html.
23 H-W. Park, W. B. Cha, and S. Uhm, Highly efficient thermal plasma scrubber technology for the treatment of perfluorocompounds (PFCs), Appl. Chem. Eng., 29, 10-17 (2018).   DOI
24 S. Jodpinmai, S. Boonduang, and P. Limsuwan, Dielectric barrier discharge ozone generator using aluminum granules electrodes, J. Electrostat., 74, 108-114 (2015).   DOI
25 H-W. Park and S. Uhm, Various technologies for simultaneous removal of NOx and SO2 from flue gas, Appl. Chem. Eng., 28, 607-618 (2017).   DOI