• Title/Summary/Keyword: air oxidation

Search Result 951, Processing Time 0.026 seconds

Treatment Characteristics of 1,4-Dioxane by Advanced Oxidation Process System (AOP에 의한 1,4-다이옥산의 처리 특성에 관한 연구)

  • Lee, Soo;Kang, Hak-Su;Choi, Jae-Hyuk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.32-40
    • /
    • 2008
  • 1,4-Dioxane is an EPA priority pollutant often found in contaminated ground waters and industrial effluents. Conventional water treatment techniques are limited to decompose this compound effectively. Therefore, an advanced oxidation process system (AOP) was used for the degradation of 1,4-dioxane. This research investigates the effect of adding oxidants, such as ozone, air, and $H_2O_2$ during the UV irradiation of 1,4-dioxane solution. In order to analyze 1,4-dioxane, a modified 8270 method, which is an improved method of U.S EPA 8720, was used. Degradation efficiencies of 1,4-dioxane by only UV irradiation at various temperatures were not significant. However, The addition of oxidants and air bubbling in the UV irradiation system for 1,4-dioxane decomposition showed the higher 1,4-dioxane degradation rate. And, during AOP treatment the tendency of TOC changes was similar to that of 1,4-dioxane decomposition rate.

Oxidation of Cr2AlC Carbides at 700-1000℃ in Air (Cr2AlC 탄화물의 700-1000℃에서의 대기중 산화)

  • Won, Sung Bin;Hwang, Yeon Sang;Lee, Dong Bok
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.2
    • /
    • pp.93-98
    • /
    • 2014
  • The $Cr_2AlC$ carbides oxidized at 700, 850 and $1000^{\circ}C$ in air from 70 hours up to 360 days. They oxidized according to the reaction; $Cr_2AlC+O_2{\rightarrow}{\alpha}-Al_2O_3+CO(g)$. The scales consisted primarily of the thin, essentially pure $Al_2O_3$ layer and the underlying Al-dissolved $Cr_7C_3$ layer. They grew via the outward diffusion of Al and carbon, and the inward diffusion of oxygen. The oxidation resistance of $Cr_2AlC$ was excellent due to the formation of the protective $Al_2O_3$ layer. Even when $Cr_2AlC$ oxidized at $1000^{\circ}C$ for 360 days, the ${\alpha}-Al_2O_3$ layer was only about 4 ${\mu}m$-thick.

FUNDAMENTAL STUDY ON THE RECOVERY AND REMOVAL OF WHITE PHOSPHORUS FROM PHOSPHORUS SLUDGE

  • Jung, Joon-Oh
    • Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.38-44
    • /
    • 2005
  • Electro-thermal production of white phosphorus(WP, P4) generates substantial amount of highly toxic phossy water and sludges. Because of their high phosphorus contents and lack of reliable processing technology, large tonnages of these hazardous wastes have accumulated from current and past operations in the United States. In this study, two different methods for treatment of phosphorus sludge were investigated. These were bulk removal of WP by physical separation(froth flotation) and transformation of WP to oxyphosphorus compounds by air oxidation in the sludge medium. Kerosene, among other collectors, resulted in selective flotation of WP from the associated mineral gangue. Solvent action of kerosene occurring on the WP surface(by rendering WP particles hydrophobic) might produce the high selectivity of WP. The WP recovery in the froth was 79.3% from a sludge assaying 34.2% of WP. In the oxidation study, air gas was dispersed in the sludge medium by the rapid rotation of the impeller blades. The high level of sludge agitation intensity caused a fast completion of the oxidation reactions and it resulted in the high percentage conversion of WP to PO4-3 with PO3-3 making up almost all portion of oxyphosphorus compounds. The WP analysis on the treated sludge showed that supernatant solution and solid residue contained an average of 4.2 μg/L and 143 ppm respectively from the sludge containing about 26 g of WP. Further investigation will be required on operational factors to better understand the processes and achieve an optimum condition.

High-Temperature Oxidation Kinetics and Scales Formed on P122 Steel Welds in Air (P122강 용접부의 대기중 고온산화 부식속도와 스케일 분석)

  • Bak, Sang-Hwan;Lee, Dong-Bok
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.699-707
    • /
    • 2011
  • P122 steel, with a composition of Fe-10.57%Cr-1.79%W-0.96Cu-0.59Mn was arc-welded and oxidized between $600^{\circ}C$ and $800^{\circ}C$ in air for up to 6 months. The oxidation rates increased in the order of the base metal, weld metal, and heat-affected zone (HAZ), depending on the microstructure. The scale morphologies of the base metal, weld metal, and HAZ were similar because it was determined mainly by the alloy chemistry. The scale consisted primarily of a thin $Fe_2O_3$ layer at $600^{\circ}C$ and $700^{\circ}C$ and an outer $Fe_2O_3$ layer and an inner ($Fe_2O_3$, $FeCr_2O_4$)-mixed layer at $800^{\circ}C$. The microstructural changes resulting from heating between $600^{\circ}C$ and $800^{\circ}C$ coarsened the carbide precipitates, secondary Laves phases, and subgrain boundaries in the matrix, resulting in softening of the base metal, weld metal, and HAZ.

Oxidation Mechanism of SiC (SiC의 산화반응 기구)

  • 최태운;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.2
    • /
    • pp.79-82
    • /
    • 1981
  • SiC powder was heated in air over the temperature range of 1100-135$0^{\circ}C$. $\beta$-cristobalite was formed to cover the surfaces of SiC particles by the reaction: $SiC(s)+20_2(g)=SiO_2(s)+CO_2(g)$. It is assumed that the diffusion of oxygen ion through the formed surface layer of $\beta$-cristobalite controls the oxidation of the SiC particles. The diffusion coefficient of oxygen ion through the $\beta$-cristobalite layer was obtained as the following equation: $D=3.84{\times}10^{-17}$exp(-14.7/RT)

  • PDF

A STUDY ON OXIDATION TREATMENT OF URANIUM METAL CHIP UNDER CONTROLLING ATMOSPHERE FOR SAFE STORAGE

  • Kim, Chang-Kyu;Ji, Chul-Goo;Bae, Sang-Oh;Woo, Yoon-Myeoung;Kim, Jong-Goo;Ha, Yeong-Keong
    • Nuclear Engineering and Technology
    • /
    • v.43 no.4
    • /
    • pp.391-398
    • /
    • 2011
  • The U metal chips generated in developing nuclear fuel and a gamma radioisotope shield have been stored under immersion of water in KAERI. When the water of the storing vessels vaporizes or drains due to unexpected leaking, the U metal chips are able to open to air. A new oxidation treatment process was raised for a long time safe storage with concepts of drying under vacuum, evaporating the containing water and organic material with elevating temperature, and oxidizing the uranium metal chips at an appropriate high temperature under conditions of controlling the feeding rate of oxygen gas. In order to optimize the oxidation process the uranium metal chips were completely dried at higher temperature than $300^{\circ}C$ and tested for oxidation at various temperatures, which are $300^{\circ}C$, $400^{\circ}C$, and $500^{\circ}C$. When the oxidation temperature was $400^{\circ}C$, the oxidized sample for 7 hours showed a temperature rise of $60^{\circ}C$ in the self-ignition test. But the oxidized sample for 14 hours revealed a slight temperature rise of $7^{\circ}C$ representing a stable behavior in the self-ignition test. When the temperature was $500^{\circ}C$, the shorter oxidation for 7 hours appeared to be enough because the self-ignition test represented no temperature rise. By using several chemical analyses such as carbon content determination, X-ray deflection (XRD), Infrared spectra (IR) and Thermal gravimetric analysis (TGA) on the oxidation treated samples, the results of self-ignition test of new oxidation treatment process for U metal chip were interpreted and supported.

SULFIDATION PROCESSING AND Cr ADDITION TO IMPROVE OXIDATION RESISTANCE OF Ti-Al INTERMETALLIC COMPOUNDS AT ELEVATED TEMPERATURES

  • Narita, Toshio;Izumi, Takeshi;Yatagai, Mamoru;Yoshioka, Takayuki
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 1999.05a
    • /
    • pp.5-5
    • /
    • 1999
  • A novel process is proposed to improve oxidation resistance of Ti-Al intermetallic compounds at elevated temperatures by both Cr addition and pre-sulfidation, where TiAl alloys withlor without Cr addition were sulfidized at 1173K for 86.4ks at a 1.3 Pa sulfur partial pressure in a $H_2-H_2S$ gas mixture. The pre-sulfidation treatment formed a thin Cr-Al alloy layer as well as 7~10 micrometer $TiAl_3$ and $TiAl_2$ layer, due to selective sulfidation of Ti. Oxidation resistance of the pre-sulfidation processed TiAl 4Cr alloy was examined under isothermal and heat cycle conditions between room temperature and 1173K in air. Changes in $TiAl_3$ into $TiAl_2$ and then TiAl phases as well as their effect on oxidation behavior were investigated and compared with the oxidation behavior of the TiAl-4Cr alloy as TiAl and pre-sulfidation processed TiAl aHoys. After oxidation for up to 2.7Ms a protective $Al_2O_3$ scale was formed, and the pre-formed $TiAl_3$ changed into $TiAl_2$ and the $Al_2Cr$ phase changed into a CrAlTi phase between the $Al_2O_3$ scale and $TiAl_2$ layer. The pre-sulfidation processed TiAl-4Cr alloy had very good oxidation resistance for longer times, up to 2.7 Ms, in contrast to those observed for the pre-sulfidation processed TiAl alloy where localized oxidation occurred after 81 Oks and both the TiAl and TiAl-4Cr alloys themselves corroded rapidly from the initial stage of oxidation

  • PDF

Corrosion and Oxidation Behaviors of ion-nitrided tool Steels (이온질화된 공구강 표면의 산화 및 공식거동)

  • Choe Han-Cheol;Lee Ho-Jong;Jeong Yong-Woon
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.3
    • /
    • pp.126-135
    • /
    • 2005
  • SKD 11 steel has been widely used for tools, metallic mold and die for press working because of its favorable mechanical properties such as high toughness and creep strength as well as excellent oxidation resistance. The ion nitrided tool steel containing Mo results in improvement of corrosion resistance, strength at high temperature and pitting resistance, especially in $Cl^-$ contained environment. But the Mo addition causes a disadvantage such as lower oxidation resistance at elevated temperature. In this study, several effects of ion-disadvantage on the oxidation characteristics for SKD 11 steel with various oxidation temperature were investigated. SKD 11 steels were manufactured by using vacuum furnace and solutionized for 1 hr at $1,050^{\circ}C$. Steel surface was ion nitrided at $500^{\circ}C$ for 1 hr and 5 hr by ion nitriding equipment. ion nitrided specimen were investigated by SEM, OM and hardness tester. Oxidation was carried out by using muffle furnace in air at $500^{\circ}C,\;700^{\circ}C\;and\;900^{\circ}C$ for 1hr, respectively. Oxidation behavior of the ion nitrided specimen was investigated by SEM, EDX and surface roughness tester. The conclusions of this study are as follows: It was found that plasma nitriding for 5 hr at $500^{\circ}C$, compared with ion nitriding for 1 hr at $500^{\circ}C$, had a thick nitrided layer and produced a layer with good wear, corrosion resistance and hardness as nitriding time increased. Nitrided SKD 11 alloy for 1hr showed that wear resistance and hardness decreased, whereas surface roughness increased, compared with nitrided SKD 11 alloy for 5 hr. The oxidation surface at $900^{\circ}C$ showed a good corrosion resistance.

Preparation and Characteristics of Magnetite Ferrofluid (Magnetite 강자성유체의 제조와 그 특성)

  • 김태옥;김상문
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.1
    • /
    • pp.13-22
    • /
    • 1990
  • The magnetite ferrofluids of which solvents are water or kerosene have been prepared by making surfactant absorbed on the surface of the magnetite which have been synthesized by air oxidation of Fe(OH)2 at pH 11 and 75$^{\circ}C$, and their basic properties have been measured by XRD, SEM, DTA, TG, viscometer, magnetometer and B-H tracer. The results are as follows ; 1) The shape of magnetite prepared by air oxidation is found to be sphere-like shape and its particle size is smaller than 200A. 2) The maximum amount of sodium oleate adsorbed on the surface of magnetite is about 20% in the weight of the magnetite including the adsorbed sodium oleate. And when magnetite is well dispersed into solvent, R(the weight ratio of the added sodium oleate to Fe3O4) is 0.40-0.48. 3) The dispersion ratio, the viscosity and the magnetization of magnetite ferrofluid are constant regardless of the added amount of sodium oleate above R=0.40-0.48. 4) The magnetic hysteresis curves of magnetite ferrofluid show superparamagnetism-like behavior.

  • PDF

Numerical Modeling of Soot Formation in $C_2H_4$/Air Turbulent Non-premixed Flames ($C_2H_4$/Air 비예혼합 난류화염의 매연생성 모델링)

  • Kim, Tae-Hoon;Woo, Min-O;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.22-28
    • /
    • 2010
  • The Direct Quadrature Method of Moments (DQMOM) has been presented for the solution of population balance equation in the wide range of the multi-phase flows. This method has the inherently interesting features which can be easily applied to the multi-inner variable equation. In addition, DQMOM is capable of easily coupling the gas phase with the discrete phases while it requires the relatively low computational cost. Soot inception, subsequent aggregation, surface growth and oxidation are described through a population balance model solved with the DQMOM for soot formation. This approach is also able to represent the evolution of the soot particle size distribution. The turbulence-chemistry interaction is represented by the laminar flamelet model together with the presumed PDF approach and the spherical harmonic P-1 approximation is adopted to account for the radiative heat transfer.