Browse > Article
http://dx.doi.org/10.5695/JKISE.2014.47.2.093

Oxidation of Cr2AlC Carbides at 700-1000℃ in Air  

Won, Sung Bin (School of Advanced Materials Science & Engineering, Sungkyunkwan University)
Hwang, Yeon Sang (School of Advanced Materials Science & Engineering, Sungkyunkwan University)
Lee, Dong Bok (School of Advanced Materials Science & Engineering, Sungkyunkwan University)
Publication Information
Journal of the Korean institute of surface engineering / v.47, no.2, 2014 , pp. 93-98 More about this Journal
Abstract
The $Cr_2AlC$ carbides oxidized at 700, 850 and $1000^{\circ}C$ in air from 70 hours up to 360 days. They oxidized according to the reaction; $Cr_2AlC+O_2{\rightarrow}{\alpha}-Al_2O_3+CO(g)$. The scales consisted primarily of the thin, essentially pure $Al_2O_3$ layer and the underlying Al-dissolved $Cr_7C_3$ layer. They grew via the outward diffusion of Al and carbon, and the inward diffusion of oxygen. The oxidation resistance of $Cr_2AlC$ was excellent due to the formation of the protective $Al_2O_3$ layer. Even when $Cr_2AlC$ oxidized at $1000^{\circ}C$ for 360 days, the ${\alpha}-Al_2O_3$ layer was only about 4 ${\mu}m$-thick.
Keywords
Ternary carbide; $Cr_2AlC$; Oxidation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Q. M. Wang, R. Mykhaylonka, A. Flores Renteria, J. L. Zhang, C. Leyens, K. H. Kim, Corros. Sci., 52 (2010) 3791.
2 M. W. Barsoum, M. Radovic, Annu. Rev. Mater. Res., 41 (2011) 195.   DOI   ScienceOn
3 G. Ying, X. He, M. Li, S. Du, W. Han, F. He, J. Alloys Compd., 509 (2011) 8022.   DOI   ScienceOn
4 Z. Lin, Y. Zhou, M. Li, J. Wang, Z. Metallkd., 96 (2005) 291.   DOI
5 G. Ying, X. He, M. Li, W. Han, F. He, S. Du, Mater. Sci. Eng., A528 (2011) 2635.
6 W. Tian, P. Wang, G. Zhang, Y. Kan, Y. Li, D. Yan, Scripta Mater., 54 (2006) 841.   DOI   ScienceOn
7 Z. Lin, Y. Zhou, M. Li, J. Wang, J. Mater. Sci. Technol., 23 (2007) 721.
8 W. Tian, P. Wang, Y. Kan, G. Zhang, J. Mater. Sci., 43 (2008) 2785.   DOI
9 D. B. Lee, T. D. Nguyen, S. W. Park, Oxid. Met., 77 (2012) 275.   DOI
10 D. B. Lee, J. Kor. Inst. Surf. Eng., 44 (2011) 125.   DOI   ScienceOn
11 D. B. Lee, T. D. Nguyen, J. H. Han, S. W. Park, Corros. Sci., 49 (2007) 3926.   DOI   ScienceOn
12 D. B. Lee, T. D. Nguyen, J. Alloys Compd., 464 (2008) 434.   DOI   ScienceOn
13 S. Li, X. Chen, Y. Zhou, G. Song, Ceram. Int., 39 (2013) 2715.   DOI
14 L. O. Xiao, S. B. Li, G. Song, W. G. Sloof, J. Eur. Ceram. Soc., 31 (2011) 1497.   DOI
15 T. M. Besmann, N. S. Kulkarni, K. E. Spear, J. Am. Ceram. Soc., 89 (2006) 638.   DOI   ScienceOn
16 I. Barin, Thermochemical Data of Pure Substances, VCH, Germany (1989) 48.
17 J. M. Schneider, Z. Sun, R. Mertens, F. Uestel, R. Ahuja, Solid State Commun., 130 (2004) 445.   DOI   ScienceOn
18 H. J. Yang, Y. T. Pei, J. T. M. De Hosson, Scripta Mater., 69 (2013) 203.   DOI   ScienceOn
19 Z. Sun, D. Music, R. Ahuja, J. M. Schneider, J. Phys. Condens. Mat., 17 (2005) 7169.   DOI   ScienceOn
20 B. A. Pint, P. F. Tortorelli, I. G. Wright, Oxidation of Intermetallics, H. J. Grabke, M. Schutze (Ed.), Wiley-VCH, Germany (1977) 183.
21 Z. Sun, S. Li, R. Ahuja, J. M. Schneider, Solid State Commun., 129 (2004) 589.   DOI   ScienceOn