DOI QR코드

DOI QR Code

Oxidation of Cr2AlC Carbides at 700-1000℃ in Air

Cr2AlC 탄화물의 700-1000℃에서의 대기중 산화

  • Won, Sung Bin (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Hwang, Yeon Sang (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Lee, Dong Bok (School of Advanced Materials Science & Engineering, Sungkyunkwan University)
  • 원성빈 (성균관대학교 신소재공학부) ;
  • 황연상 (성균관대학교 신소재공학부) ;
  • 이동복 (성균관대학교 신소재공학부)
  • Received : 2014.04.10
  • Accepted : 2014.04.20
  • Published : 2014.04.30

Abstract

The $Cr_2AlC$ carbides oxidized at 700, 850 and $1000^{\circ}C$ in air from 70 hours up to 360 days. They oxidized according to the reaction; $Cr_2AlC+O_2{\rightarrow}{\alpha}-Al_2O_3+CO(g)$. The scales consisted primarily of the thin, essentially pure $Al_2O_3$ layer and the underlying Al-dissolved $Cr_7C_3$ layer. They grew via the outward diffusion of Al and carbon, and the inward diffusion of oxygen. The oxidation resistance of $Cr_2AlC$ was excellent due to the formation of the protective $Al_2O_3$ layer. Even when $Cr_2AlC$ oxidized at $1000^{\circ}C$ for 360 days, the ${\alpha}-Al_2O_3$ layer was only about 4 ${\mu}m$-thick.

Keywords

References

  1. M. W. Barsoum, M. Radovic, Annu. Rev. Mater. Res., 41 (2011) 195. https://doi.org/10.1146/annurev-matsci-062910-100448
  2. G. Ying, X. He, M. Li, S. Du, W. Han, F. He, J. Alloys Compd., 509 (2011) 8022. https://doi.org/10.1016/j.jallcom.2011.04.134
  3. Z. Lin, Y. Zhou, M. Li, J. Wang, Z. Metallkd., 96 (2005) 291. https://doi.org/10.3139/146.101033
  4. Q. M. Wang, R. Mykhaylonka, A. Flores Renteria, J. L. Zhang, C. Leyens, K. H. Kim, Corros. Sci., 52 (2010) 3791.
  5. G. Ying, X. He, M. Li, W. Han, F. He, S. Du, Mater. Sci. Eng., A528 (2011) 2635.
  6. W. Tian, P. Wang, G. Zhang, Y. Kan, Y. Li, D. Yan, Scripta Mater., 54 (2006) 841. https://doi.org/10.1016/j.scriptamat.2005.11.009
  7. Z. Sun, D. Music, R. Ahuja, J. M. Schneider, J. Phys. Condens. Mat., 17 (2005) 7169. https://doi.org/10.1088/0953-8984/17/46/001
  8. Z. Lin, Y. Zhou, M. Li, J. Wang, J. Mater. Sci. Technol., 23 (2007) 721.
  9. W. Tian, P. Wang, Y. Kan, G. Zhang, J. Mater. Sci., 43 (2008) 2785. https://doi.org/10.1007/s10853-008-2516-2
  10. D. B. Lee, T. D. Nguyen, S. W. Park, Oxid. Met., 77 (2012) 275. https://doi.org/10.1007/s11085-012-9285-7
  11. D. B. Lee, J. Kor. Inst. Surf. Eng., 44 (2011) 125. https://doi.org/10.5695/JKISE.2011.44.4.125
  12. D. B. Lee, T. D. Nguyen, J. H. Han, S. W. Park, Corros. Sci., 49 (2007) 3926. https://doi.org/10.1016/j.corsci.2007.03.044
  13. D. B. Lee, T. D. Nguyen, J. Alloys Compd., 464 (2008) 434. https://doi.org/10.1016/j.jallcom.2007.10.018
  14. S. Li, X. Chen, Y. Zhou, G. Song, Ceram. Int., 39 (2013) 2715. https://doi.org/10.1016/j.ceramint.2012.09.039
  15. L. O. Xiao, S. B. Li, G. Song, W. G. Sloof, J. Eur. Ceram. Soc., 31 (2011) 1497. https://doi.org/10.1016/j.jeurceramsoc.2011.01.009
  16. T. M. Besmann, N. S. Kulkarni, K. E. Spear, J. Am. Ceram. Soc., 89 (2006) 638. https://doi.org/10.1111/j.1551-2916.2005.00719.x
  17. I. Barin, Thermochemical Data of Pure Substances, VCH, Germany (1989) 48.
  18. J. M. Schneider, Z. Sun, R. Mertens, F. Uestel, R. Ahuja, Solid State Commun., 130 (2004) 445. https://doi.org/10.1016/j.ssc.2004.02.047
  19. Z. Sun, S. Li, R. Ahuja, J. M. Schneider, Solid State Commun., 129 (2004) 589. https://doi.org/10.1016/j.ssc.2003.12.008
  20. H. J. Yang, Y. T. Pei, J. T. M. De Hosson, Scripta Mater., 69 (2013) 203. https://doi.org/10.1016/j.scriptamat.2013.04.013
  21. B. A. Pint, P. F. Tortorelli, I. G. Wright, Oxidation of Intermetallics, H. J. Grabke, M. Schutze (Ed.), Wiley-VCH, Germany (1977) 183.