Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.9.699

High-Temperature Oxidation Kinetics and Scales Formed on P122 Steel Welds in Air  

Bak, Sang-Hwan (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
Lee, Dong-Bok (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
Publication Information
Korean Journal of Metals and Materials / v.49, no.9, 2011 , pp. 699-707 More about this Journal
Abstract
P122 steel, with a composition of Fe-10.57%Cr-1.79%W-0.96Cu-0.59Mn was arc-welded and oxidized between $600^{\circ}C$ and $800^{\circ}C$ in air for up to 6 months. The oxidation rates increased in the order of the base metal, weld metal, and heat-affected zone (HAZ), depending on the microstructure. The scale morphologies of the base metal, weld metal, and HAZ were similar because it was determined mainly by the alloy chemistry. The scale consisted primarily of a thin $Fe_2O_3$ layer at $600^{\circ}C$ and $700^{\circ}C$ and an outer $Fe_2O_3$ layer and an inner ($Fe_2O_3$, $FeCr_2O_4$)-mixed layer at $800^{\circ}C$. The microstructural changes resulting from heating between $600^{\circ}C$ and $800^{\circ}C$ coarsened the carbide precipitates, secondary Laves phases, and subgrain boundaries in the matrix, resulting in softening of the base metal, weld metal, and HAZ.
Keywords
metals; welding; microstructure; oxidation; thermal analysis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 J. C. Vaillant, B. Vandenberghe, B. Hahn, H. Heuser, and C. Jochum, Int. J. Pres. Ves. Pip. 85, 38 (2008).   DOI   ScienceOn
2 H. S. Lee, J. S. Jung, K. B. Yoo, and E. H. Kim, J. Kor. Inst. Met. & Mater. 28, 409 (1990).
3 S. Y. Bae, H. G. Kang, H. S. Yun, C. W. Kim, D. B. Lee, and B. S. Lim, Mater. Sci. Eng. A. 499, 262 (2009).   DOI   ScienceOn
4 B. J. Kim, M. K. Kim, H. T. Dung, and B. S. Lim, Kor. J. Met. Mater. 48, 19 (2010).   DOI   ScienceOn
5 B. H. Choe, K. B. Yoon, N. H. Lee, S. Kim, G. J. Lee, K. H. Kim, and D. I. Kwon, J. Kor. Inst. Met. & Mater. 46, 276 (2008).
6 S. H. Kim, B. J. Song, I. H. Kuk, and W. S. Ryu, J. Kor. Inst. Met. & Mater. 38, 454 (2000).
7 J. S. Hyun, K, B, Yoo, and H. S. Choi, J. Kor. Soc. Prec. Eng. 25, 116 (2008).
8 K. Sawada, K. Kubo, and F. Abe, Mater. Sci. Eng. A 319, 784 (2001).
9 J. C. Chang, N. H. Heo, and C. H. Lee, Met. Mater. Int. 17, 131 (2011).   DOI   ScienceOn
10 J. J. Shim, Y. H. Kim, and S. Y. Lee, J. Kor. Inst. Met. & Mater. 28, 409 (1990).
11 A. Gustafson and M. Hattestrand, Mater. Sci. Eng. A 333, 279 (2002).   DOI   ScienceOn
12 C. J. Wang and J. G. Duh, J. Mater. Sci. 23, 3447 (1988).   DOI   ScienceOn
13 D. J. Young, High Temperature Oxidation and Corrosion of Metals, Elsevier, USA, (2008).
14 N. Birks, G. H. Meier, and F. S. Pettit, Introduction to High Temperature Oxidation of Metals, 2nd Ed., Cambridge Univ. Press, UK, (2006).