• Title/Summary/Keyword: air drag

Search Result 259, Processing Time 0.032 seconds

Study on the Evaluation of Frictional Drag Reduction by Air Lubrication and the Arrangement of Air Injection Parts for a Liquefied Natural Gas Carrier (공기윤활에 의한 액화천연가스운반선의 마찰저항저감 평가 및 공기 분사부 배치에 대한 연구)

  • Kim, Hee-Taek;Kim, Hyoung-Tae;Kim, Hyun-Joe;Kim, Jung-Joong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.3
    • /
    • pp.144-157
    • /
    • 2021
  • Brake Horse Power (BHP) reduction ratios by air injection to the underside of the hull surface in an actual ship are predicted using an unstructured finite-volume CFD solver and compared with the sea trial results. In addition, air lubrication system installed on the existing vessel is investigated to find a good solution for additional drag reduction. As a results, it is found that the thickness of the air layer should be minimized within a stable range while securing the area covered by the air layer as much as possible. Furthermore, the amount of frictional drag reduced by air injection is found to be independent of surface roughness and still effective on rough surface. Based on the results of this study, it is expected that systematic and reliable air lubrication system can be designed and evaluated using the proposed method.

Air Flow Sensor with Corrugation Structure for Low Air Velocity Detection (주름구조를 적용한 저속 유속 센서)

  • Choi, Dae-Keun;Lee, Sang-Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.393-399
    • /
    • 2011
  • In this paper, we designed and fabricated the novel air flow sensor using air drag force, which can be applied to the low air flow detection. To measure the low air flow, we should enlarge the air drag force and the output signal at the given air flow. The paddle structure is applied to the device, and the device is vertically located against the air flow to magnify the air drag force. We also adapt the corrugation structure to improve the output signals on the given air velocity. The device structure is made up of the silicon nitride layer and the output signal is measured with the piezoresistive layer. The output signals from the corrugated device show the better measurement sensitivity and the response time than that of flat one. The repeated measurement also shows the stabilized signals.

Optimization of drag reduction effect of air lubrication for a tanker model

  • Park, Seong Hyeon;Lee, Inwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.4
    • /
    • pp.427-438
    • /
    • 2018
  • The reduction of $CO_2$ emissions has been a key target in the marine industry since the IMO's MEPC published its findings in 2009. Air lubrication method is one of the mature technologies for commercialization to reduce the frictional resistance and enhance fuel efficiency of ships. Air layer is formed by the coalescence of the injected air bubbles beyond a certain air flow rate. In this study, a model ship (${\lambda}=33.33$) of a 50,000 ton medium range tanker is equipped with an air lubrication system. The experiments were conducted in the 100 m long towing tank facility at the Pusan National University. By selecting optimal air injector configuration and distribution ratio between two injectors, the total resistance of model $R_{TM}$ was able to be reduced down to 18.1% in the model scale. Key issue was found to suppress the sideway leakage of injected air by appropriate injection parameters.

Numerical analysis of drag reduction of turbulent flow in a pipe (원관내 난류의 저항감소현상에 대한 수치해석)

  • 홍성진;김광용;최형진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.733-739
    • /
    • 1999
  • A modified low-Re $k-\varepsilon$ model is used for the calculation of drag-reducing turbulent flow by polymer injection in a pipe. With the viscoelastic model, molecular viscosity in the definition of turbulent viscosity is related to elongations viscosity of the solution to account for the effects of drag reduction. Finite volume method is used for the discretization, and power-law scheme is used as a numerical scheme. Computed dimensionless velocity profiles are in good agreements with the experimental data in case of low drag reductions. However, in case of high drag reductions, they deviate largely from the measurements in the central zone of the flow field.

  • PDF

Numerical Study an Drop Breakup in Air-Assisted Spray Using the TAB Model with a Modified Drop Drag Model (TAB 모텔과 수정된 액적 항력 모텔을 이용한 공기 보초 분무에서의 액적 분열에 대한 수치적 연구)

  • 고권현;유홍선;이성혁;홍기배
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.87-95
    • /
    • 2002
  • The aim of this article is to perform the numerical simulation far drop drag and breakup processes in air-assisted sprays using the Taylor analogy breakup (TAB) model with a modified drop drag model, in which a random method is newly used to consider the variation of the drop's frontal area. The predicted results for drop trajectory and Salter mean diameter (SMD) were compared with experimental data and the simulation results using the earlier published models such as TAH model, surface wave instability (Wave) model, and Wave model with original drop drag model. In addition, the effects of the breakup model constant, Ck, on prediction of spray behaviors were discussed. The results shows that the TAB model with the modified drop drag model is in better agreement with experimental data than the other models, indicating the present model is acceptable for predicting the drop breakup process in air-assisted sprays. At higher Weber numbers, the smaller Ck shows the best fitting to experimental data. It should be noted that more elaborated studies is required in order to determine the breakup model constant in the suggested model in the study.

An Experimental Study on the Ballistic Accuracy by Air Guide Grooves (공기안내홈이 탄도 정확도에 미치는 실험적 연구)

  • Kim, Junkyu;Kim, Hyungse;Lee, Moonhwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.195-201
    • /
    • 2016
  • An experimental study has been found the air guide grooves for reducing drag. When a bullet is fired and move in the air, the drag is generated. The vortex which is one of the types of drag hinders the movement of the bullet. To solve this phenomenon, cut a negative grooves that we are called the air guiding grooves at the back of bullet. The grooves bullet has identified that the drag compared to conventional ammunition(KM80 and K193) is reduced to 4.480 and 4.054 : 10 % through a Finite Analysis Program($Ansys^{TM}$). Even pressure center was retreating 0.72 % compared to a Bullet(KM80 and K193). Effect obtained with these results is the accuracy of the grooves bullet in a shooting test was improved by over 32 %(KM80: 2.86, air guide grooves : 1.94) compared to conventional ammunition(KM80 and K193). In addition, muzzle velocity is increased 73 m/s. This is expected to be extended the velocity and effective range of bullet. Also, the velocity of the grooves bullet is increased when moving in the air while the velocity of the bullet(KM80 and K193) is reduced. The gas ejected from the muzzle to be balanced and stable flight of the Bullet. Given these effects, we can reckon the air guide grooves have positive influence.

THE EFFECT OF AIR DRAG IN OPTIMAL POWER-LIMITED RENDEZVOUS BETWEEN COPLANAR LOW-EARTH ORBITS (유한 전력 추력기를 사용하는 우주비행체의 동일 평면상에서의 랑데뷰시 공기저항의 영향)

  • 맹길영;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.221-228
    • /
    • 1998
  • The effect of air drag was researched when a low-earth orbit spacecraft using power-limited thruster rendezvoused another low-earth orbit spacecraft. The air density was assumed to decrease exponentially. The radius of parking orbit was 6655.935km and that of target orbit was 7321.529km. From the trajectories of active vehicles, the fuelconsumption and the magnitude of thrust acceleration, we could conclude that the effect of air drag had to be considered in fuel optimal rendezvous problem between low-earth orbit spacecrafts. In multiple-revolution rendezvous case, the air drag was more effective.

  • PDF

Drag Reduction by Polymer and Surfactant in Tubulent Channel and Pipe Flows (난류 유동일때 관과 channel에서 고분자와 계면활성제에 의한 마찰저항 감소에 관한 연구)

  • Park, S.-R.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.359-365
    • /
    • 1995
  • The drag reduction phenomenon with an additives of surfactant(STAC, stearlytrimethyl ammonium chloride) and polymer(PEO, polyethlene oxide) was investigated in fully developed turbulent pipe and channel flows at various low Reynolds numbers as well as very low additives concentration. A maximum of 70% drag reduction compared with plain water flow was found. This maximum drag reduction percentage obtained with surfactant solution was slightly higher than that of the Virk's asymptote in polymer solution.

  • PDF

Investigation of Drop Test Method for Simulation of Low Gravity Environment (저중력 환경 모사를 위한 낙하 시험 방법 연구)

  • Baek, Seungwhan;Yu, Isang;Shin, Jaehyun;Park, Kwangkun;Jung, Youngsuk;Cho, Kiejoo;Oh, Seunghyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.78-87
    • /
    • 2021
  • Understanding the liquid propellant transport phenomena in low gravity is essential for developing Korea Space Launch Vehicle (KSLV) upper-stage for the diversity of space missions. A low-gravity environment can be simulated via the free-fall method on the ground; however, the air drag is inevitable. To reduce air resistance during free fall, air-drag shield is usually adopted. In this study, the free-fall method was performed with an air-drag shield from a 7-m height tower. The acceleration of a falling object was measured and analyzed. Low gravity below 0.01 g was achieved during 1.2-s free fall with the air-drag shield. The minimum gravitational acceleration value at 1.2-s after free fall was ±0.005 g, which is comparable to the value obtained from Bremen drop tower experiments, ±0.002 g. A prolonged free-fall duration may enhance the low-gravity quality during the drop tower experiments.

Flow Characteristics of Drag Reducing Channel Flows Induced by Surfactant (계면활성제를 첨가한 마찰감소 채널흐름의 유동특성)

  • Park, S.R.;Yoon, H.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.4
    • /
    • pp.519-526
    • /
    • 1996
  • A 2D-LDV system was employed to investigate the flow field characteristics in fully developed drag reducing turbulent channel flows. The additive used in this study was Habon-G which showed splendid drag reduction effect and minimum mechanical degradation trend in the closed flow circulation loop. In order to have better understanding of the drag reduction mechanism, the instantaneous velocities were carefully measured under various experimental conditions and the flow characteristics including time-averaged velocity, turbulent intensity and Reynolds shear stresses were carefully assessed. The time-averaged velocity profiles of surfactant flows showed more parabolic shape(typically shown in a laminar flow) together with significant suppression of turbulent production, yielding the shear induced micelle structure orienting in the flow direction due to its isotropic characteristics. Especially it was observed that the maximum intensity for drag reducing flows was shifted away from the wall and that the streamwise and normal turbulent intensities were strongly altered. This phenomenon strongly suggests that the viscous sublayer becomes thicker with addition of surfactant. Turbulent momentum transport was drastically suppressed across the whole drag reducing channel flow.

  • PDF