• 제목/요약/키워드: agrobacterium tumefaciens

검색결과 364건 처리시간 0.031초

Agrobacterium-mediated transformation of Lycopersicon esculentum (cv. MicroTom) with two pathogen-induced hot pepper transcription factors

  • Seong, Eun-Soo;Oh, Sang-Keun;Eunsook Chung;Park, Doil
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.79.1-79
    • /
    • 2003
  • Two pathogen-induced hot pepper transcription factors (CaNACl and CapIfl) were introduced into‘MicroTom’tomato by Agrobacterium tumefaciens-mediated transformation. We used to nptII containing kanamycin resistance gene as a selection marker. Both transformed and non-transformed plants were transferred to pot after rooting test in vitro. To approximate the levels of caNACl transcript in leaves of wild-type and transgenic plants, RNA blots were hybridized with double-stranded full-length CaNACl probe at moderate stringency, Although the relative signal strength for hybridization fluctuated among the samples on different blots, transgenic plant lines N-1, N-2 and N-3 consistently displayed increased levels of CaNACl transcript relative to other transgenic lines and wild-type plants. Of all the transgenic lines examined, line N-7 had the least amount of CaNACl transcript. Role of these transcription factors in pathogen defense will be examined by overexpression in tomato.

  • PDF

Current status on applications of conventional breeding techniques and biotechnological system in ornamentals

  • Kim, Jong Bo
    • Journal of Plant Biotechnology
    • /
    • 제47권2호
    • /
    • pp.107-117
    • /
    • 2020
  • Flower industry is now growing due to the development of economy in many countries. Simultaneously, needs from consumers in flower market are varied widely. To satisfy the needs from consumers and deal with a variety of diseases from a lots of pathogens as well as climate change, new elite flower cultivars should be released in flower market. For this purpose, conventional and biotechnological techniques can be employed to make good cultivar. Therefore, this review describes the general overview of flower breeding techniques including cross-hybridization, mutation breeding and genetic transformation systems. Also, breeding systems for ornamentals derived from plant tissue culture such as embryo culture, in vitro fertilization, ovary/ovule culture and haploid production were reviewed. Furthermore, in this study recent development of the generation of new flower cultivars using marker-assisted breeding, plant transformation including particle bombardment and Agrobacterium tumefaciens as well as genome-editing technology were described. This review will be contributed to the development and releasement of new flower cultivars with horticulturally useful traits in the future.

Expression of Modified Green Fluorescent Protein in Suspension Culture of Taxus cuspidata

  • Kim, Chang-Heon;Kim, Kyung-Il;Chung, In-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권1호
    • /
    • pp.91-94
    • /
    • 2000
  • The suspension cells of Taxus cuspidata were transformed with Agrobacterium tumefaciens harboring binary vector pCAMBIE1302 encoding mgfp. Transient transfection efficiency was compared by using the fluoremetric measurement. The transient transfection efficiency was improved by transformation with DMSO and/or sonication treatment. Optimum conditions for DMSO and sonication treatment were 3% and 30sec, respectively. selection and maintenance of transformed cells were continued for 3 months. An insertion of the mgfp gene in transformed cells was detected by PCR and an expression of GFP confirmed by the western blot analysis.

  • PDF

Current Technologies and Related Issues for Mushroom Transformation

  • Kim, Sinil;Ha, Byeong-Suk;Ro, Hyeon-Su
    • Mycobiology
    • /
    • 제43권1호
    • /
    • pp.1-8
    • /
    • 2015
  • Mushroom transformation requires a series of experimental steps, including generation of host strains with a desirable selective marker, design of vector DNA, removal of host cell wall, introduction of foreign DNA across the cell membrane, and integration into host genomic DNA or maintenance of an autonomous vector DNA inside the host cell. This review introduces limitations and obstacles related to transformation technologies along with possible solutions. Current methods for cell wall removal and cell membrane permeabilization are summarized together with details of two popular technologies, Agrobacterium tumefaciens-mediated transformation and restriction enzyme-mediated integration.

Regeneration and Agrobacterium - Mediated Transient Transformation of Button Daisy (Leucanthemum vulgare)

  • Franklin G.;Alaiwi W. Abou;Goldman S.L.
    • Journal of Plant Biotechnology
    • /
    • 제7권1호
    • /
    • pp.37-43
    • /
    • 2005
  • Explants of button daisy were screened for their regeneration potential and transient GUS gene expression. Medium containing MS salts minerals and $B_5$ vitamins supplemented with $0.1\;\cal{mg/L}$ BA and $0.1\;\cal{mg/L}$ TDZ showed the best regeneration. Disc florets and receptacles were the most responsive explants in regeneration and transient gene expression respectively. Regenerated plants were successfully rooted and established in the green-house conditions. Infection and co-cultivation of explants with Agrobacterium tumefaciens containing pCAMBIA 1301 resulted in transient GUS foci. Among the different explants, receptacles showed the highest percentage of transient GUS gene expression. Enzymatic and molecular analyses of transformed calli confirmed the integration of GUS gene.

Utilization of Pollen Grain from Liluim cv. Casablanca as a Transient Gene Expression Host (유전자의 일시발현 분석용 숙주개발을 위한 카사블랑카백합(Lilium cv. Casablanca) 화분립의 이용)

  • Park, Hee-Sung
    • Applied Biological Chemistry
    • /
    • 제47권4호
    • /
    • pp.430-433
    • /
    • 2004
  • Lilium cv. Casablanca pollen grains stored at $-70^{\circ}C$ were grown in pollen germination medium with Agrobacterium tumefaciens LBA4404 cells harboring pBI121 for 18 hr at $27^{\circ}C$. Following this, cefotaxime (250 mg/L) was treated for 6 hr to eradicate the bacterial cells. Histochemical GUS analysis revealed that the transgenic pollen displayed deep blue color mostly from 12 hr after the co-cultivation. Presence of $200\;{\mu}M$ acetosyringone was determined not to be more effective for GUS transformation than its absence. GUS DNA integration in the transgenic pollen genomic DNA was clearly demonstrated by Southern blot analysis.

Transformation of Birdsfoot trefoil by BcHSP17.6 Gene using Agrobacterium tumefaciens (BcHSP17.6 유전자 도입에 의한 버즈풋 트레포일의 형질전환)

  • 김기용;성병렬;임용우;최기준;임영철;장요순;정의수;김원호;김종근
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • 제21권3호
    • /
    • pp.145-150
    • /
    • 2001
  • This study was conducted to obtain the transformed birdsfoot trefoil (Lotus corniculatus L.) plants with BcHSP17.6 gene using Agrobacterium turnefaciens LBA4404 and we confirmed transformed gene from the regenerated birdsfoot trefoil plants. The expression vector, pBKH4 vector, harboring BcHSP17.6 gene was used for production of transgenic birdsfoot trefoil plants. The callus of birdsfoot trefoil was cocultivated with Agrobacteriurn turnefaciens and transformed calli were selected on kanamycin-containing SH-kc medium to regenerate into plants. The transformed birdsfoot trefoil plants were produced 4 momths after cultivation on BOi2Y medium. The transgenic birdsfoot trefoil plants were analyzed by isolation of genomic DNA and genomic Southern hybridization using a -32P labelled BcHSPl7.6 fragments. (Key words : Birdsfoot trefoil, Transgenic plant. BcHSP17.6 gene, Callus induction, Plant regeneration)

  • PDF