• 제목/요약/키워드: agricultural plants

검색결과 3,131건 처리시간 0.036초

Assessing Soil Fertility Status of Edible Wild Plants Fields in Ulleung Island

  • Park, Sang-Jo;Park, Jun-Hong;Kim, Byung-Sung;Chung, Yun-Hak;Lee, Dong-Jun;Kwon, Oh-Heun;Park, So-Deuk;Lee, Suk-Hee
    • 한국토양비료학회지
    • /
    • 제49권4호
    • /
    • pp.368-374
    • /
    • 2016
  • The perennial edible wild plants such as Aster glehnii, Solidago virgaurea subsp. gigantean, Allium ochotense, Athyrium acutipinnulum, Aruncus dioicus var. kamtschaticus and Codonopsis lanceolata have cultivated as the main income crops introduced into the fields about 30 years ago in Ulleung island. Soil samples were collected from 190 fields and assessed the effects of management practices on soil chemical properties at wild edible plant fields under no-till system. The strong acidic soils of pH 5.4 or less were detected in 45% of the soil samples. The level of soil organic matter was being held at mean $63{\pm}28g\;kg^{-1}$, 2.7 times higher than upland soils in Korea. Available phosphate and exchangeable potassium showed more than recommended levels of upland crops as $680{\pm}489mg\;kg^{-1}$ and $1.94{\pm}1.7cmol_c\;kg^{-1}$, respectively. The fields of Solidago and Aster showing strong soil acidity and high level of available phosphate and water soluble $NO_3{^-}$ were distinguished from other crops in analysis of variance and principal component analysis of soil chemicals. These results suggested that high frequency of acidic soil and high levels of available $P_2O_5$, exchangeable $K_2O$ and water soluble $NO_3{^-}$ were accompanied with the use of urea and NPK-fertilizer based on nitrogen in the field. However, further research is needed to understand the appropriate management of fertilization and the prevention of soil acidification for wild edible plants.

화색 변경을 위한 카로티노이드 대사공학 (Carotenoid Metabolic Engineering in Flowering Plants)

  • 하선화;정예솔;임선형;김재광;이동호;이종렬;김영미
    • 원예과학기술지
    • /
    • 제30권2호
    • /
    • pp.107-122
    • /
    • 2012
  • 식물에서 화색은 종자를 퍼트리기 위해 꽃가루 매개충과 초식동물을 유인하는데 매우 중요한 도구이다. 사람에게 화색은 다채로운 시각적 다양성으로 큰 심미적 가치를 지님으로써 화훼산업의 발전은 새롭고 다양한 매력을 지닌 화색을 생산하는 방향으로 꾸준히 발전되어 왔다. 카로티노이드 성분은 화색 중에서 적색, 홍색, 황색을 나타내는 천연색소로서 이러한 카로티노이드 생합성 경로는 생명공학 기술을 이용하여 화색을 변화시키려는 대사공학의 주된 대상으로 여겨져 왔다. 본 총설에서는 카로티노이드 생합성 대사관련 유전자 발현 조절에 의한 색소 표현형의 변화를 소개하고자 하며, 최근 카로티노이드의 생합성을 넘어 절단과 축적 조절이 화색 변경을 위한 대표적인 기작으로 보고됨에 따라 다양한 화색만큼이나 다양한 조절 기작에 대한 현재까지의 지식을 총 동원하여 원하는 화색을 지닌 인공적인 꽃(engineered flower)을 생산하기 위한 전략을 종합해서 제시하고자 하였다.

Overexpression of Brassica rapa GROWTH-REGULATING FACTOR genes in Arabidopsis thaliana increases organ growth by enhancing cell proliferation

  • Hong, Joon Ki;Oh, Seon-Woo;Kim, Jeong Hoe;Lee, Seung Bum;Suh, Eun Jung;Lee, Yeon-Hee
    • Journal of Plant Biotechnology
    • /
    • 제44권3호
    • /
    • pp.271-286
    • /
    • 2017
  • GROWTH-REGULATING FACTOR (GRF) genes encode plant-specific transcription factors containing two conserved QLQ and WRC domains and play critical roles in regulating the growth and development of lateral organs, such as cotyledons, leaves, and flowers. To explore the agricultural potential of Brassica rapa GRF genes (BrGRFs), the researchers isolated seven BrGRFs (BrGRF3-1, 3-2, 5, 7, 8-1, 8-2, and 9) and constructed BrGRF-overexpressing Arabidopsis thaliana plants (BrGRF-OX). BrGRF-OX plants developed larger cotyledons, leaves, and flowers as well as longer roots than the wild type. The increase in size of these organs were due to increases in cell number, but not due to cell size. BrGRF-OX plants also had larger siliques and seeds. Furthermore, BrGRF-OX seeds produced more oil than the wild type. RT-PCR analysis revealed that BrGRFs regulated expression of a wide range of genes that are involved in gibberellin-, auxin-, cell division-related growth processes. Taken together, the data indicates that BrGRFs act as positive regulators of plant growth, thus raising the possibility that they may serve as a useful genetic source for crop improvement with respect to organ size and seed oil production.

Sclerotium rolfsii에 의한 시클라멘 흰비단병 (Sclerotium Rot of Cyclamen europaeum Caused by Sclerotium rolfsii)

  • 권진혁;이흥수;김진우;김원일;심홍식;신순선
    • 식물병연구
    • /
    • 제20권3호
    • /
    • pp.223-226
    • /
    • 2014
  • 2013년 4월 경상남도농업기술원 유리 온실에서 Sclerotium rolfsii에 의한 시클라멘 흰비단병 증상이 발생하였다. 병징은 시클라멘의 잎과 잎자루, 꽃자루 부분이 수침상으로 물러지고 부패되면서 시들어 말라 죽는다. 병반부와 토양 표면에 흰색의 곰팡이가 발생하며 갈색의 작은 둥근 균핵이 많이 형성되었다. 감자한천배지에서 균총은 흰색이고 잘 자라며 배양기간이 경과됨에 따라 갈색의 작은 둥근 균핵을 많이 형성하였다. 시클라멘에서 발생한 병징과 병원균의 균학적 특징, 그리고 ITS rDNA 염기서열 비교분석 결과, 이 병을 S. rolfsii Saccardo에 의한 시클라멘 흰비단병으로 명명하고자 제안한다.

Variation in the Resistance of Japanese Soybean Cultivars to Phytophthora Root and Stem Rot during the Early Plant Growth Stages and the Effects of a Fungicide Seed Treatment

  • Akamatsu, Hajime;Kato, Masayasu;Ochi, Sunao;Mimuro, Genki;Matsuoka, Jun-ichi;Takahashi, Mami
    • The Plant Pathology Journal
    • /
    • 제35권3호
    • /
    • pp.219-233
    • /
    • 2019
  • Soybean cultivars susceptible to Phytophthora root and stem rot are vulnerable to seed rot and damping-off of seedlings and young plants following an infection by Phytophthora sojae. In this study, the disease responses of Japanese soybean cultivars including currently grown main cultivars during the early growth stages were investigated following infections by multiple P. sojae isolates from Japanese fields. The extent of the resistance to 17 P. sojae isolates after inoculations at 14, 21, and 28 days after seeding varied significantly among 18 Japanese and two US soybean cultivars. Moreover, the disease responses of each cultivar differed significantly depending on the P. sojae isolate and the plant age at inoculation. Additionally, the treatment of 'Nattosyo-ryu' seeds with three fungicidal agrochemicals provided significant protection from P. sojae when plants were inoculated at 14-28 days after seeding. These results indicate that none of the Japanese soybean cultivars are completely resistant to all tested P. sojae isolates during the first month after sowing. However, the severity of the disease was limited when plants were inoculated during the later growth stages. Furthermore, the protective effects of the tested agrochemicals were maintained for at least 28 days after the seed treatment. Japanese soybean cultivars susceptible to Phytophthora root and stem rot that are grown under environmental conditions favorable for P. sojae infections require the implementation of certain practices, such as seed treatments with appropriate agrochemicals, to ensure they are protected from P. sojae during the early part of the soybean growing season.

Effects of Panicle Position and Planting Density on the Physicochemical Properties of Starch in Panicle Number Type Rice

  • Han, Chae-Min;Shin, Jong-Hee;Kwon, Jung-Bae;Kim, Sang-Kuk;Won, Jong-Gun;Ryu, Jung-Gi
    • 한국작물학회지
    • /
    • 제67권3호
    • /
    • pp.155-163
    • /
    • 2022
  • The tillering potential of panicle number type (PNT) rice greatly varies with planting density. Moreover, grain filling and ripening differ depending on the panicle position, which may further affect rice grain quality. The present study evaluated the grain quality of PNT rice sparsely planted to reduce production costs. The physicochemical characteristics of starch from the grains of PNT type rice 'Ilpum' planted at different densities (37, 50, 60, and 80 plants/3.3 m2) and at different positions of panicles (upper or lower on the culm) were determined. Overall, as the planting density decreased, the number of panicles increased but the starch content decreased, which further reduced the 1,000-grain weight. In particular, at the lowest density (37 plants/3.3 m2), protein content increased but particle size, enthalpy, and relative crystallinity decreased. The effects were more pronounced at lower than at upper panicle positions. These findings indicate that tillering potential differs with planting density, ultimately affecting the palatability of rice grains. Based on these findings, we propose restricting rice transplantation to a planting density of ≤37 plants/3.3 m2 to achieve the best quality of grains at lower costs and with less labor.

바이오매스 발전소 저회를 활용한 수용액 내 중금속(Zn, Ni, Cd, Cu) 흡착 효과 (Adsorption Effect of Heavy Metals (Zn, Ni, Cd, Cu) in Aqueous Solution Using Bottom Ash of Biomass Power Plant)

  • 김소희;이승규;윤진주;박재혁;강세원;조주식
    • 한국환경농학회지
    • /
    • 제41권4호
    • /
    • pp.252-260
    • /
    • 2022
  • BACKGROUND: The number of biomass power plants is increasing around the world and the amount of wastes from power plants is expected to increase. But the bottom ash (BA) is not recycled and has been dumped in landfill. This study was conducted to find out functional groups of BA and adsorption rate of heavy metals on BA. METHODS AND RESULTS: The BA was dried in oven at 105℃ for 24 hours, and characterized by analyzing the chemistry, functional group, and surface area. The adsorption rates of heavy metals on BA were evaluated by different concentration, time, and pH. As a result, the adsorption amount of the heavy metals was high in the order of Zn> Cu> Cd> Ni and the removal rates of Zn, Cu, Cd, and Ni by BA was 49.75, 30.20, 32.46, and 36.10%, respectively. Also, the maximum adsorption capacity of BA was different by the heavy metal in the environmental conditions, and it was suggested that the isotherms for Zn, Ni, Cd, and Cu were adequate to Langmuir model. CONCLUSION(S): It is suggested that it would be effective to remove heavy metals in aqueous solution by using BA from biomass power plants in South Korea.

Effect of azoxystrobin fungicide on the physiological and biochemical indices and ginsenoside contents of ginseng leaves

  • Liang, Shuang;Xu, Xuanwei;Lu, Zhongbin
    • Journal of Ginseng Research
    • /
    • 제42권2호
    • /
    • pp.175-182
    • /
    • 2018
  • Background: The impact of fungicide azoxystrobin, applied as foliar spray, on the physiological and biochemical indices and ginsenoside contents of ginseng was studied in ginseng (Panax ginseng Mey. cv. "Ermaya") under natural environmental conditions. Different concentrations of 25% azoxystrobin SC (150 g a.i./ha and 225 g a.i./ha) on ginseng plants were sprayed three times, and the changes in physiological and biochemical indices and ginsenoside contents of ginseng leaves were tested. Methods: Physiological and biochemical indices were measured using a spectrophotometer (Shimadzu UV-2450). Every index was determined three times per replication. Extracts of ginsenosides were analyzed by HPLC (Shimadzu LC20-AB) utilizing a GL-Wondasil $C_{18}$ column. Results: Chlorophyll and soluble protein contents were significantly (p = 0.05) increased compared with the control by the application of azoxystrobin. Additionally, activities of superoxide dismutase, catalase, ascorbate peroxidase, peroxidase, and ginsenoside contents in azoxystrobin-treated plants were improved, and malondialdehyde content and $O_2^-$ contents were reduced effectively. Azoxystrobin treatments to ginseng plants at all growth stages suggested that the azoxystrobin-induced delay of senescence was due to an enhanced antioxidant enzyme activity protecting the plants from harmful active oxygen species. When the dose of azoxystrobin was 225 g a.i./ha, the effect was more significant. Conclusion: This work suggested that azoxystrobin played a role in delaying senescence by changing physiological and biochemical indices and improving ginsenoside contents in ginseng leaves.

인공광 식물공장내 광질 제어가 작물생육에 미치는 영향 (Effects of Light-Quality Control on the Plant Growth in a Plant Factory System of Artificial Light Type)

  • 허정욱;백정현
    • 한국환경농학회지
    • /
    • 제40권4호
    • /
    • pp.270-278
    • /
    • 2021
  • BACKGROUND: Horticultural plant growth under field and/or greenhouse conditions is affected by the climate changes (e.g., temperature, humidity, and rainfall). Therefore investigation of hydroponics on field horticultural crops is necessary for year-round production of the plants regardless of external environment changes under plant factory system with artificial light sources. METHODS AND RESULTS: Common sage (Salvia plebeia), nasturtium (Tropaeolum majus), and hooker chive (Allium hookeri) plants were hydroponically culturing in the plant factory with blue-red-white LEDs (Light-Emitting Diodes) and fluorescent lights (FLs). Leaf numbers of common sage under mixture LED and FL treatments were 134% and 98% greater, respectively than those in the greenhouse condition. In hooker chives, unfolded leaf numbers were 35% greater under the artificial lights and leaf elongation was inhibited by the conventional sunlight compared to the artificial light treatments. Absorption pattern of NO3-N composition in hydroponic solution was not affected by the different light qualities. CONCLUSION(S): Plant factory system with different light qualities could be applied for fresh-leaf production of common sage, nasturtium, and hooker chive plants culturing under field and/or greenhouse. Controlled light qualities in the system resulted in significantly higher hydroponic growth of the plants comparing to conventional greenhouse condition in present.

Screening of immunoactive ingredients in frequently consumed food in Korea

  • Gil, Na-Young;Lee, Sang-Myeong;Mun, Ji-Young;Yeo, Soo-Hwan;Kim, So-Young
    • Journal of Biomedical and Translational Research
    • /
    • 제19권4호
    • /
    • pp.92-102
    • /
    • 2018
  • The objectives of this study were to find out the plant to enhance immune activity among 42 kinds of foods frequently consumed by the Korean elderly consisting of 5 food groups and 5 wild plants. Each sample was assessed the immunoactive effect by measuring $NF-{\kappa}B/AP1$ gene expression, nitric oxide and cytokine production in $RAW-Blue^{TM}$ cell. Soybean sprouts of 47 plants showed the highest $NF-{\kappa}B/AP1$ gene expression at the level of $1.13{\pm}0.03$ (O.D. 650 nm) and Soritae, sweet potato, banana, apple, garlic, crown daisy, cabbage and Ailanthus altissima also had high activity of $NF-{\kappa}B/AP1$ gene in $RAW-Blue^{TM}$ cell stimulated by LPS. NO production of Ailanthus altissima was significantly higher than that of other plants and 16 plants of glutinous sorghum, black rice, Seoritae, Heuktae, sweet potato, banana, apple, garlic, mungbean sprouts, spinach, crown daisy, young pumpkin, cabbage, soybean sprouts, Actinidia arguta and Aster scaber were the next best activity. The above results selected 17 out of 47 plant samples. Moreover, soybean sprouts was significantly shown to increase $TNF-{\alpha}$ ($1,509.55{\pm}1.38pg/mL$) and $IL-1{\beta}$ ($54.56{\pm}1.08pg/mL$) cytokines in comparison with RAW-Blue cell stimulated by LPS. According to the results of in vitro evaluation, the ethanol extract of soybean sprout increased the production of immune-enhancing cytokines by proliferation of macrophages. In addition, $NF-{\kappa}B$ transcription factor activity and NO production ability were excellent, and it was selected as a material having excellent immunological activity.