Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.11.2018.0252

Variation in the Resistance of Japanese Soybean Cultivars to Phytophthora Root and Stem Rot during the Early Plant Growth Stages and the Effects of a Fungicide Seed Treatment  

Akamatsu, Hajime (Division of Lowland Farming, Hokuriku Research Center, Central Region Agricultural Research Center, National Agriculture and Food Research Organization)
Kato, Masayasu (Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences)
Ochi, Sunao (Division of Plant Disease Management, Central Region Agricultural Research Center, National Agriculture and Food Research Organization)
Mimuro, Genki (Division of Plant Disease Management, Central Region Agricultural Research Center, National Agriculture and Food Research Organization)
Matsuoka, Jun-ichi (Division of Lowland Farming, Hokuriku Research Center, Central Region Agricultural Research Center, National Agriculture and Food Research Organization)
Takahashi, Mami (Division of Lowland Farming, Hokuriku Research Center, Central Region Agricultural Research Center, National Agriculture and Food Research Organization)
Publication Information
The Plant Pathology Journal / v.35, no.3, 2019 , pp. 219-233 More about this Journal
Abstract
Soybean cultivars susceptible to Phytophthora root and stem rot are vulnerable to seed rot and damping-off of seedlings and young plants following an infection by Phytophthora sojae. In this study, the disease responses of Japanese soybean cultivars including currently grown main cultivars during the early growth stages were investigated following infections by multiple P. sojae isolates from Japanese fields. The extent of the resistance to 17 P. sojae isolates after inoculations at 14, 21, and 28 days after seeding varied significantly among 18 Japanese and two US soybean cultivars. Moreover, the disease responses of each cultivar differed significantly depending on the P. sojae isolate and the plant age at inoculation. Additionally, the treatment of 'Nattosyo-ryu' seeds with three fungicidal agrochemicals provided significant protection from P. sojae when plants were inoculated at 14-28 days after seeding. These results indicate that none of the Japanese soybean cultivars are completely resistant to all tested P. sojae isolates during the first month after sowing. However, the severity of the disease was limited when plants were inoculated during the later growth stages. Furthermore, the protective effects of the tested agrochemicals were maintained for at least 28 days after the seed treatment. Japanese soybean cultivars susceptible to Phytophthora root and stem rot that are grown under environmental conditions favorable for P. sojae infections require the implementation of certain practices, such as seed treatments with appropriate agrochemicals, to ensure they are protected from P. sojae during the early part of the soybean growing season.
Keywords
chemical control; Glycine max; partial resistance; Rps gene; zoospore;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wrather, J. A., Anderson, T. R., Arsyad, D. M., Tan, Y., Ploper, L. D., Porta-Puglia, A., Ram, H. H. and Yorinori, J. T. 2001a. Soybean disease loss estimates for the top ten soybean-producing countries in 1998. Can. J. Plant Pathol. 23:115-121.   DOI
2 Wrather, J. A., Stienstra, W. C. and Koenning, S. R. 2001b. Soybean disease loss estimates for the United States from 1996 to 1998. Can. J. Plant Pathol. 23:122-131.   DOI
3 Wrather, A. and Koenning, S. 2009. Effects of diseases on soybean yields in the United States 1996 to 2007. Plant Health Prog. doi: 10.1094/PHP-2009-0401-01-RS.   DOI
4 Wu, X., Zhou, B., Zhao, J., Guo, N., Zhang, B., Yang, F., Chen, S., Gai, J. and Xing, H. 2011. Identification of quantitative trait loci for partial resistance to Phytophthora sojae in soybean. Plant Breed. 130:144-149.   DOI
5 Yamashita, Y., Tazawa, A. and Minami, M. 2012. Development of a method to evaluate the field resistance of soybean to Phytophthora sojae. Jpn. J. Crop Sci. 81:183-189 (in Japanese).   DOI
6 Sugimoto, T., Yoshida, S., Kaga, A., Hajika, M., Watanabe, K., Aino, M., Tatsuda, K., Yamamoto, R., Matoh, T., Walker, D. R., Biggs, A. R. and Ishimoto, M. 2011. Genetic analysis and identification of DNA markers linked to a novel Phytophthora sojae resistance gene in the Japanese soybean cultivar Waseshiroge. Euphytica 182:133-145.   DOI
7 Dorrance, A. E., Berry, S. A., Anderson, T. R. and Meharg, C. 2008. Isolation, storage, pathotype characterization, and evaluation of resistance for Phytophthora sojae in soybean. Plant Health Prog. doi: 10.1094/PHP-2008-0118-01-DG.   DOI
8 Mideros, S., Nita, M. and Dorrance, A. E. 2007. Characterization of components of partial resistance, Rps2, and root resistance to Phytophthora sojae in soybean. Phytopathology 97:655-662.   DOI
9 Mimuro, G. 2011. Control of Phytophthora root and stem rot of soybean by seed treatment with fungicides and amelioration of soil acidity. Plant Prot. 65:351-355 (in Japanese).
10 Dorrance, A. E., Mills, D., Robertson, A. E., Draper, M. A., Giesler, L. and Tenuta, A. 2007. Phytophthora root and stem rot of soybean. Plant Health Instr. doi: 10.1094/PHI-I-2007-0830-07.   DOI
11 Dorrance, A. E., Robertson, A. E., Cianzo, S., Giesler, L. J., Grau, C. R., Draper, M. A., Tenuta, A. U. and Anderson, T. R. 2009. Integrated management strategies for Phytophthora sojae combining host resistance and seed treatments. Plant Dis. 93:875-882.   DOI
12 Esker, P. D. and Conley, S. P. 2012. Probability of yield response and breaking even for soybean seed treatments. Crop Sci. 52:351-359.   DOI
13 FAOSTAT. 2016. FAOSTAT statistical databases. Food and Agriculture Organization of the United Nations, Rome. URL http://www.fao.org/faostat/en/#data/QC [26 June 2018].
14 Fehr, W. R., Cianzio, S. R., Voss, B. K. and Schultz, S. P. 1989. Registration of "Conrad" soybean. Crop Sci. 29:830.   DOI
15 Munkvold, G. P. 2009. Seed pathology progress in academia and industry. Annu. Rev. Phytopathol. 47:285-311.   DOI
16 Mitani, S., Araki, S., Yamaguchi, T., Takii, Y., Ohshima, T. and Matsuo, N. 2001. Antifungal activity of the novel fungicide cyazofamid against Phytophthora infestans and other plant pathogenic fungi in vitro. Pestic. Biochem. Physiol. 70:92-99.   DOI
17 Moriwaki, J. 2010. Aiming at the construction of the race distinction system of Japanese Phytophthora sojae. Plant Prot. 64:508-510 (in Japanese).
18 Mukobata, H. and Sekihara, J. 2006. Occurrence of Phytophthora root and stem rot of soybean in various places in Toyama Prefecture in 2002. Proc. Assoc. Plant Prot. Hokuriku 55:27-32 (in Japanese).
19 Honda, T., Hasunuma, N. and Nishioka, M. 2007. Amisulbrom (NC-224): performance of new fungicide for potato late blight control. In: Proceedings of the tenth workshop of an European network for development of an integrated control strategy of potato late blight, ed. by H. T. A. M. Schepers, pp. 59-65. Bologna, Italy.
20 Hunger, R. M., Hamm, P. B., Horner, C. E. and Hansen, E. M. 1982. Tolerance of Phytophthora megasperma isolates to metalaxyl. Plant Dis. 66:645-649.   DOI
21 McBlain, B. A., Hacker, J. K., Zimmerly, M. M. and Schmitthenner, A. F. 1991. Tolerance to Phytophthora rot in soybean: II. Evaluation of three tolerance screening methods. Crop Sci. 31:1412-1417.   DOI
22 Tooley, P. W. and Grau, C. R. 1982. Identification and quantitative characterization of rate-reducing resistance to Phytophthora megasperma f. sp. glycinea in soybean seedlings. Phytopathology 72:727-733.   DOI
23 Forster, H., Coffey, M. D., Elwood, H. and Sogin, M. L. 1990. Sequence analysis of the small subunit ribosomal RNAs of three zoosporic fungi and implications for fungal evolution. Mycologia 82:306-312.   DOI
24 Anderson, T. R. and Buzzell, R. I. 1992. Inheritance and linkage of the Rps7 gene for resistance to Phytophthora rot of soybean. Plant Dis. 76:958-959.   DOI
25 Athow, K. L., Laviolette, F. A., Mueller, E. H. and Wilcox, J. R. 1980. A new major gene for resistance to Phytophthora megasperma var. sojae in soybean. Phytopathology 70:977-980.   DOI
26 Sugimoto, T., Kato, M., Yoshida, S., Matsumoto, I., Kobayashi, T., Kaga, A., Hajika, M., Yamamoto, R., Watanabe, K., Aino, M., Matoh, T., Walker, D. R., Biggs, A. R. and Ishimoto, M. 2012. Pathogenic diversity of Phytophthora sojae and breeding strategies to develop Phytophthora-resistant soybeans. Breed Sci. 61:511-522.   DOI
27 Taylor, R. J., Salas, B., Secor, G. A., Rivera, V. and Gudmestad, N. C. 2002. Sensitivity of North American isolates of Phytophthora erythroseptica and Pythium ultimum to mefenoxam (metalaxyl). Plant Dis. 86:797-802.   DOI
28 Tooley, P. W. and Grau, C. R. 1984. Field characterization of ratereducing resistance to Phytophthora megasperma f. sp. glycinea and yield of soybean. Phytopathology 74:1201-1208.   DOI
29 Tyler, B. M. 2007. Phytophthora sojae: root rot pathogen of soybean and model oomycete. Mol. Plant Pathol. 8:1-8.   DOI
30 Tucker, D. M., Maroof, S., Mideros, S., Skoneczka, J. A., Nabati, D. A., Buss, G. R., Hoeschele, I., Tyler, B. M., St. Martin, S. K. and Dorrance, A. E. 2010. Mapping quantitative trait loci for partial resistance to Phytophthora sojae in a soybean interspecific cross. Crop Sci. 50:628-635.   DOI
31 Vaartaja, O., Pitblado, R. E., Buzzell, R. I. and Crawford, L. G. 1979. Chemical and biological control of Phytophthora root and stalk rot of soybean. Can. J. Plant Sci. 59:307-311.   DOI
32 Parlevliet, J. E. 1979. Components of resistance that reduce the rate of epidemic development. Annu. Rev. Phytopathol. 17:203-222.   DOI
33 Paxton, J. D. and Chamberlain, D. W. 1969. Phytoalexin production and disease resistance in soybeans as affected by age. Phytopathology 59:775-777.
34 Develey-Riviere, M. P. and Galiana, E. 2007. Resistance to pathogens and host developmental stage: a multifaceted relationship within the plant kingdom. New Phytol. 175:405-416.   DOI
35 Jiang, C. J., Sugano, S., Kaga, A., Lee, S. S., Sugimoto, T., Takahashi, M. and Ishimoto, M. 2017. Evaluation of resistance to Phytophthora sojae in soybean mini core collections using an improved assay system. Phytopathology 107:216-223.   DOI
36 Bienapfl, J. C., Malvick, D. K. and Percich, J. A. 2011. Specific molecular detection of Phytophthora sojae using conventional and real-time PCR. Fungal Biol. 115:733-740.   DOI
37 Burnham, K. D., Dorrance, A. E., VanToai, T. T. and St. Martin, S. K. 2003. Quantitative trait loci for partial resistance to Phytophthora sojae in soybean. Crop Sci. 43:1610-1617.   DOI
38 Cameron, J. N. and Carlile, M. J. 1977. Negative geotaxis of zoospores of the fungus Phytophthora. J. Gen. Microbiol. 98:599-602.   DOI
39 Chen, H. 2018. The spatial patterns in long-term temporal trends of three major crops' yields in Japan. Plant Prod. Sci. 21:177-185.   DOI
40 Jimenez, B. and Lockwood, J. L. 1980. Laboratory method for assessing field tolerance of soybean seedlings to Phytophthora megasperma var. sojae. Plant Dis. 64:775-778.   DOI
41 Kato, M., Minamida, K., Tojo, M., Kokuryu, T., Hamaguchi, H. and Shimada, S. 2013. Association of Pythium and Phytophthora with pre-emergence seedling damping-off of soybean grown in a field converted from a paddy field in Japan. Plant Prod. Sci. 16:95-104.   DOI
42 Kaufmann, M. J. and Gerdemann, J. W. 1958. Root and stem rot of soybean caused by Phytophthora sojae n. sp. Phytopathology 48:201-208.
43 Lazarovits, G., Stossel, R. and Ward, E. W. B. 1981. Age-related changes in specificity and glyceollin production in the hypocotyl reaction of soybeans to Phytophthora megasperma var. sojae. Phytopathology 71:94-97.   DOI
44 Lee, S., Rouf Mian, M. A., McHale, L. K., Sneller, C. H. and Dorrance, A. E. 2013a. Identification of quantitative trait loci conditioning partial resistance to Phytophthora sojae in soybean PI 407861A. Crop Sci. 53:1022-1031.   DOI
45 Fungicide Resistance Action Committee. 2018. FRAC Code List 2018: fungicides sorted by mode of action (including FRAC Code numbering). URL http://www.phi-base.org/images/frac-CodeList.pdf [14 May 2019].
46 Grau, C. R., Dorrance, A. E., Bond, J. and Russin, J. S. 2004. Fungal diseases. In: Soybeans: improvement, production, and uses, eds. by H. R. Boerma and J. E. Specht, pp. 679-764. American Society of Agronomy, Madison, WI, USA.
47 Jia, H. and Kurle, J. E. 2008. Resistance and partial resistance to Phytophthora sojae in early maturity group soybean plant introductions. Euphytica 159:27-34.   DOI
48 Dorrance, A. E. and McClure, S. A. 2001. Beneficial effects of fungicide seed treatment for soybean cultivars with partial resistance to Phytophthora sojae. Plant Dis. 85:1063-1068.   DOI
49 Dorrance, A. E. 2018. Management of Phytophthora sojae of soybean: a review and future perspectives. Can. J. Plant Pathol. 40:210-219.   DOI
50 Dorrance, A. E. and Schmitthenner, A. F. 2000. New sources of resistance to Phytophthora sojae in the soybean plant introductions. Plant Dis. 84:1303-1308.   DOI
51 Abeysekara, N. S., Matthiesen, R. L., Cianzio, S. R., Bhattacharyya, M. K. and Robertson, A. E. 2016. Novel sources of partial resistance against Phytophthora sojae in soybean PI 399036. Crop Sci. 56:2322-2335.   DOI
52 Anderson, T. R. and Buzzell, R. I. 1982. Efficacy of metalaxyl in controlling Phytophthora root and stalk rot of soybean cultivars differing in field tolerance. Plant Dis. 66:1144-1145.   DOI
53 Stewart, S. and Robertson, A. E. 2012. A modified method to screen for partial resistance to Phytophthora sojae in soybean. Crop Sci. 52:1181-1186.   DOI
54 R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL http://www.r-project.org/ [15 March 2018]
55 Rennie, B. D., Buzzell, R. I., Anderson, T. R. and Beversdorf, W. D. 1992. Evaluation of four Japanese soybean cultivars for Rps alleles conferring resistance to Phytophthora megasperma f. sp. glycinea. Can. J. Plant Sci. 72:217-220.   DOI
56 Schmitthenner, A. F. 1985. Problems and progress in control of Phytophthora root rot of soybean. Plant Dis. 69:362-368.   DOI
57 Schmitthenner, A. F. and Dorrance, A. E. 2015. Phytophthora root and stem rot. In: Compendium of soybean diseases and pests, eds. by G. L. Hartman, J. C. Rupe, E. J. Sikora, L. L. Domier, J. A. Davis, and K. L. Steffey, pp. 73-76. The American Phytopathological Society Press, St. Paul, MN, USA.
58 Schneider, R., Rolling, W., Song, Q., Cregan, P., Dorrance, A. E. and McHale, L. K. 2016. Genome-wide association mapping of partial resistance to Phytophthora sojae in soybean plant introductions from the Republic of Korea. BMC Genomics 17:607.   DOI
59 Sugimoto, T., Yoshida, S., Aino, M., Watanabe, K., Shiwaku, K. and Sugimoto, M. 2006. Race distribution of Phytophthora sojae on soybean in Hyogo, Japan. J. Gen. Plant Pathol. 72:92-97.   DOI
60 Lee, S., Rouf Mian, M. A., McHale, L. K., Wang, H., Wijeratne, A. J., Sneller, C. H. and Dorrance, A. E. 2013b. Novel quantitative trait loci for partial resistance to Phytophthora sojae in soybean PI 398841. Theor. Appl. Genet. 126:1121-1132.   DOI
61 Matheron, M. E. and Porchas, M. 2014. Effectiveness of 14 fungicides for suppressing lesions caused by Phytophthora capsici on inoculated stems of chile pepper seedlings. Plant Health Prog. 15:166-171.   DOI
62 Hansen, E. M. and Maxwell, D. P. 1991. Species of the Phytophthora megasperma complex. Mycologia 83:376-381.   DOI
63 Guerin, V., Lebreton, A., Cogliati, E. E., Hartley, S. E., Belzile, F., Menzies, J. G. and Belanger, R. R. 2014. A zoospore inoculation method with Phytophthora sojae to assess the prophylactic role of silicon on soybean cultivars. Plant Dis. 98:1632-1638.   DOI
64 Guy, S. O., Oplinger, E. S. and Grau, C. R. 1989. Soybean cultivar response to metalaxyl applied in furrow and as a seed treatment. Agron. J. 81:529-532.   DOI
65 Han, Q., Zhao, H., Huang, L., Buchenauer, H., Zuo, Y. and Kang, Z. 2011. Light and electron microscopy studies on the infection of a wild-type and metalaxyl-resistant isolate of Phytophthora sojae in soybean hypocotyls. J. Phytopathol. 159:368-376.   DOI
66 Harper, J. T., Waanders, E. and Keeling, P. J. 2005. On the monophyly of chromalveolates using a six-protein phylogeny of eukaryotes. Int. J. Syst. Evol. Microbiol. 55:487-496.   DOI
67 Hartman, G. L., West, E. D. and Herman, T. K. 2011. Crops that feed the world 2. soybean-worldwide production, use, and constraints caused by pathogens and pests. Food Sec. 3:5-17.   DOI
68 Hirooka, T. and Ishii, H. 2013. Chemical control of plant diseases. J. Gen. Plant Pathol. 79:390-401.   DOI
69 Dorrance, A. E., Jia, H. and Abney, T. S. 2004b. Evaluation of soybean differentials for their interaction with Phytophthora sojae. Plant Health Prog. doi: 10.1094/PHP-2004-0309-01-RS.   DOI
70 Dorrance, A. E., Berry, S. A., Bowen, P. and Lipps, P. E. 2004a. Characterization of Pythium spp. from three Ohio fields for pathogenicity on corn and soybean and metalaxyl sensitivity. Plant Health Prog. doi: 10.1094/PHP-2004-0202-01-RS.   DOI