Browse > Article
http://dx.doi.org/10.7740/kjcs.2022.67.3.155

Effects of Panicle Position and Planting Density on the Physicochemical Properties of Starch in Panicle Number Type Rice  

Han, Chae-Min (Division of Crops Research, Gyeongsangbuk-do Provincial Agricultural Research & Extension Services)
Shin, Jong-Hee (Division of Crops Research, Gyeongsangbuk-do Provincial Agricultural Research & Extension Services)
Kwon, Jung-Bae (Division of Crops Research, Gyeongsangbuk-do Provincial Agricultural Research & Extension Services)
Kim, Sang-Kuk (Division of Crops Research, Gyeongsangbuk-do Provincial Agricultural Research & Extension Services)
Won, Jong-Gun (Division of Crops Research, Gyeongsangbuk-do Provincial Agricultural Research & Extension Services)
Ryu, Jung-Gi (Division of Crops Research, Gyeongsangbuk-do Provincial Agricultural Research & Extension Services)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.67, no.3, 2022 , pp. 155-163 More about this Journal
Abstract
The tillering potential of panicle number type (PNT) rice greatly varies with planting density. Moreover, grain filling and ripening differ depending on the panicle position, which may further affect rice grain quality. The present study evaluated the grain quality of PNT rice sparsely planted to reduce production costs. The physicochemical characteristics of starch from the grains of PNT type rice 'Ilpum' planted at different densities (37, 50, 60, and 80 plants/3.3 m2) and at different positions of panicles (upper or lower on the culm) were determined. Overall, as the planting density decreased, the number of panicles increased but the starch content decreased, which further reduced the 1,000-grain weight. In particular, at the lowest density (37 plants/3.3 m2), protein content increased but particle size, enthalpy, and relative crystallinity decreased. The effects were more pronounced at lower than at upper panicle positions. These findings indicate that tillering potential differs with planting density, ultimately affecting the palatability of rice grains. Based on these findings, we propose restricting rice transplantation to a planting density of ≤37 plants/3.3 m2 to achieve the best quality of grains at lower costs and with less labor.
Keywords
crystallinity; gelatinization; planting density; rice starch;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Han, C. M. 2021. Effects of Pre-harvest Sprouting and Nitrogen Fertilization on Morphological and Physicochemical Properties of Floury Rice Powder and Starch. Kyungpook National University Press, Korea, pp.77
2 Hwang, W., J. Jeong, H. Lee, S. Yang, and C. Lee. 2021. Seeding rate and days for low-density transplant cultivation. Korean Journal of Crop Science 66(2) : 112-119.   DOI
3 Imberty, A., A. Buleon, V. Tran, and S. Peerez. 1991. Recent advances in knowledge of starch structure. Starch-Starke 43(10) : 375-384.   DOI
4 Juliano, B. O., C. M. Perez, E. P. Alyoshin, V. B. Romanov, M. M. Bean, K. D. Nishita, A. B. Blakeney, L. A. Welsh, L. L. Delgado, A.W. El Baya, G. Fossati, N. Kongseree, F. P. Mendes, S. Brilhante, H. Suzuki, M. Tada, and B. D. Webb. 1985. Cooperative test on amylography of milled-rice flour for pasting viscosity and starch gelatinization temperature. Starch-Starke 37(2) : 40-50.   DOI
5 Kakar, K., Y. Nitta, N. Asagi, M. Komatsuzaki, F. Shiotsu, T. Kokubo and T. D. Xuan. 2019. Morphological analysis on comparison of organic and chemical fertilizers on grain quality of rice at different planting densities. Plant Production Science 22(4) : 510-518.   DOI
6 Martin, M. and M. A. Fitzgerald. 2002. Proteins in rice grains influence cooking properties! Journal of Cereal Science. 36(3) : 285-294.   DOI
7 Mobasser, H. R., M. M. Delarestaghi, A. Khorgami, D. B. Tari, and H. Pourkalhor. 2007. Effect of planting density on agronomical characteristics of rice (Oryza sativa L.) varieties in north of Iran. Pakistan Journal of Biological Science 10(18) : 3205-3209.   DOI
8 Nakano, H., S. Morita, H. Kitagawa, H. Wada, and M. Takahashi. 2012. Grain yield response to planting density in forage rice with a large number of spikelets. Crop Science 52(1) : 345-350.   DOI
9 Saju, S. M. and N. Thavaprakaash. 2020. Influence of High Density Planting under Modified System of Rice Intensification on Growth, Root Characteristics and Yield of Rice in Western zone of Tamil Nadu. Madras Agricultural Journal 107(1-3) : 3376-3380.
10 Sterling, C. 1978. Textural qualities and molecular structure of starch products. Journal of Texture Studies 9(3) : 225-255.   DOI
11 Syahariza, Z. A., S. Sar, J. Hasjim, M. J. Tizzotti, and R. G. Gilbert. 2013. The importance of amylose and amylopectin fine structures for starch digestibility in cooked rice grains. Food Chemistry 136(2) : 742-749.   DOI
12 Vamadevan, V. and E. Bertoft. 2020. Observations on the impact of amylopectin and amylose structure on the swelling of starch granules. Food Hydrocolloid 103 : 105663.   DOI
13 Wang, F., F. Cheng, and G. Zhang. 2007. Difference in grain yield and quality among tillers in rice genotypes differing in tillering capacity. Rice Science 14(2) : 135-140.   DOI
14 Yang, S.Y., W. H. Hwang, J. H. Jeong, H. S. Lee, and C. G. Lee. 2021. Changes in growth and yield of different rice varieties under different planting densities in low-density transplanting cultivation. Korean Journal of Crop Science 66(4) : 279-288.   DOI
15 Yu, S., Y. Ma, L. Menager, and D. W. Sun. 2012. Physicochemical properties of starch and flour from different rice cultivars. Food and Bioprocess Technology 5(2) : 626-637.   DOI
16 Han, H. M., J. H. Cho, H. W. Kang, and B. K. Koh. 2012. Rice varieties in relation to rice bread quality. Journal of the Science of Food and Agriculture 92(7) : 1462-1467.   DOI
17 Baloch, A. W., A. M. Soomro, M. A. Javed, M. Ahmed, H. R. Bughio, M. S. Bughio, and N. N. Mastoi. 2002. Optimum plant density for high yield in rice (Oryza sativa L.). Asian Journal of Plant Science 1(1) : 25-27.
18 Chiang, P. Y. and A. I. Yeh. 2002. Effect of soaking on wet-milling of rice. Journal of Cereal Science 35(1) : 85-94.   DOI
19 Goldstein, A., G. Annor, V. Vamadevan, I. Tetlow, J. J. K. Kirkensgaard, K. Mortensen, A. Blennow, K. H. Hebelstrup, and E. Bertoft. 2017. Influence of diurnal photosynthetic activity on the morphology, structure, and thermal properties of normal and waxy barley starch. International Journal of Biological Macromolecules 98 : 188-200.   DOI
20 Juliano, B. O. 1965. Relation of starch composition, protein content, and gelatinization temperature to cooking and eating qualities of milled rice. Food Technol 19 : 1006-1011.
21 Kim, S. S., K. A. Kang, S. Y. Choi, and Y. T. Lee. 2005. Effect of elevated steeping temperature on properties of wet-milled rice flour. Journal of the Korean Society of Food Science and Nutrition 34(3) : 414-419.   DOI
22 Moradpour, S., R. Koohi, M. Babaei, and M. G. Khorshidi. 2013. Effect of planting date and planting density on rice yield and growth analysis (Fajr variety). International Journal of Agriculture and Crop Science 5(3) : 267.
23 Sevenou, O., S. E. Hill, I. A. Farhat, and J. R. Mitchell. 2002. Organisation of the external region of the starch granule as determined by infrared spectroscopy. International Journal of Biological Macromolecules 31(1) : 79-85.   DOI
24 Dou, Z., Y. Li, H. Guo, L. Chen, J. Jiang, Y. Zhou, Q. Xu, Z. Xing, H. Gao, and H. Zhang. 2021. Effects of mechanically transplanting methods and planting densities on yield and quality of nanjing 2728 under rice-crayfish continuous production system. Agronomy 11(3) : 488   DOI
25 Uddin, M. J., S. Ahmed, M. H. Rashid, M. M. Hasan, and M. Asaduzzaman. 2011. Effect of spacings on the yield and yield attributes of transplanted aman rice cultivars in medium lowland ecosystem of Bangladesh. Journal of Agricultural Research 49(4) : 465-476.
26 Yamamoto, A. and K. Shirakawa. 1999. Annealing of long-term stored rice grains improves gelatinization properties. Cereal Chemistry 76(5) : 646-649.   DOI
27 Zhu, L.J., Q. Q. Liu, J. D. Wilson, M. H. Gu, and Y. C. Shi. 2011. Digestibility and physicochemical properties of rice (Oryza sativa L.) flours and starches differing in amylose content. Carbohydrate Polymer 86(4) : 1751-1759.   DOI
28 Bogracheva, T. Y., V. J. Morris, S. G. Ring, and C. L. Hedley. 1998. The granular structure of C-type pea starch and its role in gelatinization. Biopolymers 45(4) : 323-332.   DOI
29 Chen, F. Q., B. S. Zhang, Q. Huang, and H. F. Lu. 2010. Research progress of determination crystallinity of starch granular by X-ray diffraction. Science and Technology of Food Industry 1 : 432-435.
30 Gabbott, P. 2008. Principles and Applications of Thermal Analysis. John Wiley & Sons, Chichester, UK. Blackwell Publishing Ltd. pp. 1-388.
31 Han, C. M., J. H. Shin, J. B. Kwon, J. S. Kim, J. G. Won, and J. S. Kim. 2021. Comparison of morphological and physicochemical properties of a floury rice variety upon pre-harvest sprouting. Foods 10(4) : 746.   DOI