• Title/Summary/Keyword: affine type

Search Result 47, Processing Time 0.03 seconds

GEOMETRIC INEQUALITIES FOR AFFINE CONNECTIONS ON RIEMANNIAN MANIFOLDS

  • Huiting Chang;Fanqi Zeng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.2
    • /
    • pp.433-450
    • /
    • 2024
  • Using a Reilly type integral formula due to Li and Xia [23], we prove several geometric inequalities for affine connections on Riemannian manifolds. We obtain some general De Lellis-Topping type inequalities associated with affine connections. These not only permit to derive quickly many well-known De Lellis-Topping type inequalities, but also supply a new De Lellis-Topping type inequality when the 1-Bakry-Emery Ricci curvature is bounded from below by a negative function. On the other hand, we also achieve some Lichnerowicz type estimate for the first (nonzero) eigenvalue of the affine Laplacian with the Robin boundary condition on Riemannian manifolds.

Robust Multiloop Controller Design of Uncertain Affine TFM(Transfer Function Matrix) System (불확실한 Affine TFM(Transfer Function Matrix) 시스템의 강인한 다중 루프 제어기 설계)

  • Byun Hwang-Woo;Yang Hai-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.1
    • /
    • pp.17-25
    • /
    • 2005
  • This paper provides sufficient conditions for the robustness of Affine linear TFM(Transfer Function Matrix) MIMO (Multi-Input Multi-Output) uncertain systems based on Rosenbrock's DNA (Direct Nyquist Array). The parametric uncertainty is modeled through a Affine TFM MIMO description, and the unstructured uncertainty through a bounded perturbation of Affine polynomials. Gershgorin's theorem and concepts of diagonal dominance and GB(Gershgorin Bands) are extended to include model uncertainty. For this type of parametric robust performance we show robustness of the Affine TFM systems using Nyquist diagram and GB, DNA(Direct Nyquist Array). Multiloop PI/PB controllers can be tuned by using a modified version of the Ziegler-Nickels (ZN) relations. Simulation examples show the performance and efficiency of the proposed multiloop design method.

AFFINE TRANSFORMATION OF A NORMAL ELEMENT AND ITS APPLICATION

  • Kim, Kitae;Namgoong, Jeongil;Yie, Ikkwon
    • Korean Journal of Mathematics
    • /
    • v.22 no.3
    • /
    • pp.517-527
    • /
    • 2014
  • In this paper, we study affine transformations of normal bases and give an explicit formulation of the multiplication table of an affine transformation of a normal basis. We then discuss constructions of self-dual normal bases using affine transformations of traces of a type I optimal normal basis and of a Gauss period normal basis.

Subband Affine Projection Algorithm Using Variable Step Size (가변 스텝사이즈를 이용한 부밴드 인접투사 알고리즘)

  • Choi, Hun;Bae, Hyeon-Deok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.69-74
    • /
    • 2007
  • In signal processing applications with highly correlated input signals, subband affine projection algorithm and step size controlling is a good solution for improving the slow convergence rate and large computational complexity of LMS-type algorithms. This paper proposes a subband affine projection algorithm using a variable step size. The proposed method achieves fast convergence rate and small steady-state error with a small computational complexity by combining the SAP and step size controlling in a subband structure. Experimental results on highly correlated input signal show that the proposed method is superior to the conventional methods.

A New Robust Variable Structure Controller With Nonlinear Integral-Type Sliding Surface for Uncertain More Affine Nonlinear Systems with Mismatched Uncertainties and Disturbance (부정합조건 불확실성과 외란을 갖는 비선형 시스템을 위한 비선형 적분형 슬라이딩 면을 갖는 새로운 강인한 가변구조제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1295-1301
    • /
    • 2010
  • In this note, a systematic general design of a new robust nonlinear variable structure controller based on state dependent nonlinear form is presented for the control of uncertain affine nonlinear systems with mismatched uncertainties and mismatched disturbance. After an affine uncertain nonlinear system is represented in the form of state dependent nonlinear system, a systematic design of a new robust nonlinear variable structure controller is presented. To be linear in the closed loop resultant dynamics, the nonlinear integral-type sliding surface is applied. A corresponding control input is proposed to satisfy the closed loop exponential stability and the existence condition of the sliding mode on the nonlinear integral-type sliding surface, which will be investigated in Theorem 1. Through a design example and simulation studies, the usefulness of the proposed controller is verified.

A NOTE ON THE ROOT SPACES OF AFFINE LIE ALGEBRAS OF TYPE $D_{\iota}^{(1)}$

  • KIM YEONOK
    • The Pure and Applied Mathematics
    • /
    • v.12 no.1
    • /
    • pp.65-73
    • /
    • 2005
  • Let g = g(A) = (equation omitted) + be a symmetrizable Kac-Moody Lie algebra of type D/sub l//sup (1) with W as its Weyl group. We construct a sequence of root spaces with certain conditions. We also find the number of terms of this sequence is less then or equal to the hight of θ, the highest root.

  • PDF

A study on the Stability of Discrete-time Affine Type III Fuzzy Control System (이산 시간 어핀 Type III 퍼지 제어 시스템의 안정도에 대한 연구)

  • Kim, Eun-Tai;Lee, Hee-Jin
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.4
    • /
    • pp.1-10
    • /
    • 2001
  • In this paper, we propose the stability analysis and design methodology for the discrete-time affine Type III fuzzy system via the convex optimization technique. First, the stability condition is derived under which the discrete-time affine Type III fuzzy system is quadratically stable in the large. Next, the derived condition is reformulated into the convex optimization problem called Linear Matrix Inequalities (LMI) and numerically addressed. Finally, the effectiveness and the feasibility of the proposed analysis and design methodology is highlighted via an example and its computer simulation result.

  • PDF

NONDEGENERATE AFFINE HOMOGENEOUS DOMAIN OVER A GRAPH

  • Choi, Yun-Cherl
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.6
    • /
    • pp.1301-1324
    • /
    • 2006
  • The affine homogeneous hypersurface in ${\mathbb{R}}^{n+1}$, which is a graph of a function $F:{\mathbb{R}}^n{\rightarrow}{\mathbb{R}}$ with |det DdF|=1, corresponds to a complete unimodular left symmetric algebra with a nondegenerate Hessian type inner product. We will investigate the condition for the domain over the homogeneous hypersurface to be homogeneous through an extension of the complete unimodular left symmetric algebra, which is called the graph extension.

Visualization of Affine Invariant Tetrahedrization (Slice-Based Method for Visualizing the Structure of Tetrahedrization) (어파인 불변성 사면체 분할법의 가시화 (절편 법을 이용한 사면체 구조의 가시화))

  • Lee, Kun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.7
    • /
    • pp.1894-1905
    • /
    • 1996
  • Delauuany triangulation which is the dual of Dirichlet tessellation is not affine invariant. In other words, the triangulation is dependent upon the choice of the coordinate axes used to represent the vertices. In the same reason, Delahanty tetrahedrization does not have an affine iveariant transformation property. In this paper, we present a new type of tetrahedrization of spacial points sets which is unaffected by translations, scalings, shearings and rotations. An affine invariant tetrahedrization is discussed as a means of affine invariant 2 -D triangulation extended to three-dimensional tetrahedrization. A new associate norm between two points in 3-D space is defined. The visualization of the structure of tetrahedrization can discriminate between Delaunay tetrahedrization and affine invariant tetrahedrization.

  • PDF