Robust Multiloop Controller Design of Uncertain Affine TFM(Transfer Function Matrix) System

불확실한 Affine TFM(Transfer Function Matrix) 시스템의 강인한 다중 루프 제어기 설계

  • Published : 2005.01.01

Abstract

This paper provides sufficient conditions for the robustness of Affine linear TFM(Transfer Function Matrix) MIMO (Multi-Input Multi-Output) uncertain systems based on Rosenbrock's DNA (Direct Nyquist Array). The parametric uncertainty is modeled through a Affine TFM MIMO description, and the unstructured uncertainty through a bounded perturbation of Affine polynomials. Gershgorin's theorem and concepts of diagonal dominance and GB(Gershgorin Bands) are extended to include model uncertainty. For this type of parametric robust performance we show robustness of the Affine TFM systems using Nyquist diagram and GB, DNA(Direct Nyquist Array). Multiloop PI/PB controllers can be tuned by using a modified version of the Ziegler-Nickels (ZN) relations. Simulation examples show the performance and efficiency of the proposed multiloop design method.

Keywords

References

  1. Birdwell. J, Castanon. D, Athans. M, 'On reliable control system designs with and without feedback reconfigurations', Proc. IEEE Conf. Control, pp. 419-426, Dec. 1979 https://doi.org/10.1109/CDC.1978.267960
  2. Ghosh. B, 'Some new results on the simultaneous stability of a family of single input, single output systems', System and Control Letters, vol. 6, no. 1, pp. 39-45, 1985 https://doi.org/10.1016/0167-6911(85)90052-0
  3. Saeks. R, Murray. J, 'Fractional representations, algebraic geometry and the simultaneous stabilization problem', IEEE Trans. on Automatic Control, vol. 27, pp. 895-903, 1982 https://doi.org/10.1109/TAC.1982.1103005
  4. G. Zames, 'Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and approximate inverses', IEEE Trans. on Automatic Control, vol. 26, no. 2, pp. 301-320, 1981 https://doi.org/10.1109/TAC.1981.1102603
  5. K. Glover, J. C. Doyle, 'State-space fomulate for all stabilizing controllers that satisfy an $H_{\infty}$-norm bound and relations to risk sensitivity', System and Control Letters, vol. 11, pp. 167-172, 1988 https://doi.org/10.1016/0167-6911(88)90055-2
  6. C. H. Houpis, Quantitative Feedback Theory (QFT) Technique, CRC Press, pp. 701-717, 1996
  7. V. L. Kharitonov, 'Asymptotic stability of an equilibrium position of a family of systems of linear differential equations', Differential'nye Uraveniya, vol. 14, pp. 1483-1485, 1978
  8. Barmish. B. R., Hollot. C. V., Kraus. F., and Tempo. R., 'Extreme point results for robust stabilization of interval plants with first order compensators', IEEE Trans. on Automatic Control, vol. 37, pp. 707-714, 1992 https://doi.org/10.1109/9.256326
  9. Bartlett. A. C., Hollot C. V., and Huang. L., 'Root locations of an entire polytope of polynomials: it suffices to check the edges', Math. Control & Signals Sys., vol 1, pp. 61-71, 1988 https://doi.org/10.1007/BF02551236
  10. S. P. Bhattacharyya et al 2, Robust Control: The Parametric Approach, Prentice-Hall, 1995
  11. T. E. Djaferis, Robust Control Design: A Polynomial Approach, Kluwer Academic Pub., 1995
  12. J. Ackerman, Robust Control: Systems with Uncertain Physical Parameters, Springer-Verlag, 1993
  13. Fu. M, 'Computing the frequency response of linear systems with parametric perturbations', System and Control Letters, vol. 15, pp. 45-52, 1990 https://doi.org/10.1016/0167-6911(90)90043-T
  14. Rosenbrock H. H, State-Space and Multivariable Theory, London : U. K. Nelson, 1970
  15. W. K. Ho and Wen Xu, 'Multivariable PID Controller Design Based on the Direct Nyquist Array Method', Proc. of the American Control Con. Pennsylvania, pp. 3524-3528, 1998 https://doi.org/10.1109/ACC.1998.703262
  16. W. L. Luyben, 'Getting More Information from Relay-Feedback Tests'. Ind. Eng. Chem. Res, vol. 40, pp. 4391-4402, 2001 https://doi.org/10.1021/ie010142h
  17. C. T. Baab, J. C. Cockburn, H. A. Latchman & O. D. Crisalle, 'Extension of the Nyquist Robust Margin to Systems with Nonconvex Value Sets', AACC, pp. 1414-1419, June 2001 https://doi.org/10.1109/ACC.2001.945922
  18. M. Araki and O. I. Nwokah, 'Bounds for Closed-Loop Transfer Function of Multivariable Systems', IEEE Trans. on Automatic Control, vol. 20, pp. 666-670, 1975 https://doi.org/10.1109/TAC.1975.1101051
  19. W. K. Ho, O. P. Gn, E. B. Tay, & E. E. Ang, 'Performance and Gain and Phase Marins of Well-Known PID Tuning Formulas', IEEE Trans. on Control systems tech., vol. 4, pp. 473-477, 1996 https://doi.org/10.1109/87.508897
  20. Etfhymios. K & Neil. M, 'Extreme point solution to Diagonal dominance problem and Stability analysis of uncertain systems.', Proc. of the American Control Con., pp. 3936-3940, 1997 https://doi.org/10.1109/ACC.1997.609628
  21. A. C. Bartlett, et al. 1, 'A necessary sufficient condition for schur invariance degeneralized stability of polytopes polynomials,' IEEE Trans. on Automatic Control, vol. 33, no. 6, pp. 575-583, 1988 https://doi.org/10.1109/9.1256