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GEOMETRIC INEQUALITIES FOR AFFINE CONNECTIONS

ON RIEMANNIAN MANIFOLDS

Huiting Chang and Fanqi Zeng

Abstract. Using a Reilly type integral formula due to Li and Xia [23],
we prove several geometric inequalities for affine connections on Riemann-

ian manifolds. We obtain some general De Lellis-Topping type inequali-

ties associated with affine connections. These not only permit to derive
quickly many well-known De Lellis-Topping type inequalities, but also

supply a new De Lellis-Topping type inequality when the 1-Bakry-Émery
Ricci curvature is bounded from below by a negative function. On the

other hand, we also achieve some Lichnerowicz type estimate for the first

(nonzero) eigenvalue of the affine Laplacian with the Robin boundary
condition on Riemannian manifolds.

1. Introduction

The classical Reilly formula goes back to R. C. Reilly, who showed in [28]
an integral version of a Bochner type formula. Since then, the Reilly type
formulas have been enriched extensively and broadly, and they play important
roles in many branches of analysis and geometry. A huge literature exists on the
Reilly type formulas, and it’s just impossible for our intention to mention all the
progress. So we refer to the classical and recent works [11,15,17,19–22,24,25,27]
for interested readers.

More recently, in the important works of Li and Xia [23], the authors intro-
duced a 2-parameter family of affine connections and derived the corresponding
Ricci curvature. Then they established an integral Bochner type formula and
obtained from it various geometric inequalities under more general Ricci cur-
vature conditions, for example, Heintze-Karchner type and Minkowski type
inequalities. They also obtained from it the closed, the Dirichlet and the Neu-
mann first (nonzero) eigenvalue estimates. Later, Huang, Ma and Zhu [16]
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achieved some Colesanti type inequality by using such new Reilly type integral
formula with respect to affine connections. In this paper, we use this general-
ized Reilly formula and suitable elliptic PDEs to prove De Lellis-Topping type
inequalities and Lichnerowicz type inequalities associated with affine connec-
tions under more general Ricci curvature conditions.

Let us provide the rigorous definitions we are going to employ for affine
connections on Riemannian manifolds (see [16,23]).

Let (M, g̃) be an n-dimensional Riemannian manifold with the boundary

∂M and ∇̃ be the Levi-Civita connection of g̃. Let V = ef , where f is a
smooth function defined on M . We call (M, g̃, V ) a Riemannian triple.

For two real constants α, γ and two vector fields X, Y on M , we define a
2-parameter family of affine connections by

(1.1) Dα,γ
X Y := ∇̃XY + αdf(X)Y + αdf(Y )X + γg̃(X,Y )∇̃f.

As Li and Xia [23] have already noted, when α = γ = 0, Dα,γ is a Levi-
Civita connection for g̃; when α = −γ, Dα,γ is a Levi-Civita connection for the
conformal metric e2αf g̃. Except for α = γ = 0 and α = −γ, Dα,γ may not be
a Levi-Civita connection for any Riemannian metric. Then the Ricci curvature
with respect to the affine connection Dα,γ is given by

RicD
α,γ

:= Ric− [(n− 1)α+ γ]∇̃2f +
[
(n− 1)α2 − γ2

]
df ⊗ df(1.2)

+
[
γ∆̃f + (γ2 + (n− 1)αγ)|∇̃f |2

]
g̃.

RicD
α,γ

unifies various particular cases recently studied in the literature, such
as Ricci tensor, static Ricci tensor, 1-Bakry-Émery Ricci tensor and conformal
Ricci tensor.

Throughout this paper, we use ∇̃ and ∆̃ to denote the gradient and the
Laplacian on M , respectively; ∇ and ∆ to denote the gradient and the Lapla-
cian on ∂M , respectively, with respect to the induced metric g. The volume
form of g̃ is dΩ and the volume form of induced metric g on ∂M is dA, re-
spectively. The mean curvature H of ∂M is given by H = trg̃(II), where

II(X,Y ) = g̃(∇̃Xn, Y ) denotes the second fundamental form with n the out-

ward unit normal on ∂M . We use ∇̃Dα,γ

, ∇̃2,Dα,γ

and ∆̃Dα,γ

to denote the
affine gradient, the affine Hessian, and the affine Laplacian with respect to
Dα,γ ; the exact definition will be given in Section 2. We also make the follow-
ing conventions:

IID
α,γ

= II − γ(lnV )ng

and

HDα,γ

= H + (n− 1)α(lnV )n.

In celebrated paper [10], De Lellis and Topping proved (and independently
by Andrews, cf. [8, Corollary B. 20]) a classical inequality on closed mani-
folds. Later, this inequality was called the De Lellis-Topping type inequal-
ity. In recent years, De Lellis-Topping type inequalities in other spaces (for
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instance, CR manifolds, smooth metric measure spaces, sub-static manifolds,
asymptotically Euclidean manifolds, etc.) have also been paid attention to. For
instance, Chen, Saotome and Wu [5] gave a CR version of De Lellis-Topping
type inequality; Wu [30] showed a De Lellis-Topping type inequality in smooth
metric measure spaces; Li and Xia [24] obtained a weighted De Lellis-Topping
type inequality for closed sub-static manifolds; Avalos and Freitas [1] proved a
De Lellis-Topping type inequality in asymptotically Euclidean manifolds which
does not need restrictions on the Ricci curvature. Cheng proved in [7] a De
Lellis-Topping type inequality for symmetric (0, 2)-tensors satisfying a second
Bianchi type identity on closed manifolds. Another recent generalization of the
De Lellis-Topping inequality, see, e.g., [3, 4, 6, 9, 11,12,14,15,18,26,31].

In view of these developments, inspired by the important works of Li and
Xia [23], it is natural to investigate the more general De Lellis-Topping type
inequalities for affine connections. In this paper, we will give a more general De
Lellis-Topping type inequality for affine connections. We note that our results
include many previously known results as special cases.

The main result of this paper is the following De Lellis-Topping type in-
equalities.

Theorem 1.1. Let (Mn, g̃, V = ef ) be an n-dimensional compact Riemannian
triple with n ≥ 3 and boundary ∂M . Let Dα,γ be the affine connection defined
as in (1.1) and τ = (n+1)α+ γ. Let T be a symmetric (0, 2)-tensor such that

T (n, ·) ≥ 0 along the boundary and divT = c∇̃B, where B = trg̃T denotes its

trace and c is a constant. If V γ−αRicD
α,γ

≥ −(n−1)K1g̃ for some nonnegative

constant K1, and K2 = max(V α−γ |∇̃Dα,γ

f |2), and IID
α,γ ≥ 0, then

(1.3)
(nc− 1)2

n2

∫
M

V τ (B −B
V τ

)2 dΩ ≤ Cn,K1,K2,λ1

∫
M

V τ

∣∣∣∣T − B

n
g̃

∣∣∣∣2 dΩ

and, equivalently,

(1.4)
(nc− 1)2

n

∫
M

V τ

∣∣∣∣∣T − B
V τ

n
g̃

∣∣∣∣∣
2

dΩ ≤ Ĉn,K1,K2,λ1

∫
M

V τ

∣∣∣∣T − B

n
g̃

∣∣∣∣2 dΩ,

where

Cn,K1,K2,λ1
=

n− 1

n
+

1

λ1

[
(n− 1)K1 + [(τ − γ − α)2 + nα2]K2

+ 2
√
[λ1 + (n− 1)K1][(τ − γ − α)2 + nα2]K2

]
,

Ĉn,K1,K2,λ1 =
(nc− 1)2 + n− 1

n
+

1

λ1

[
(n− 1)K1 + [(τ − γ − α)2 + nα2]K2

+ 2
√
[λ1 + (n− 1)K1][(τ − γ − α)2 + nα2]K2

]
,
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B
V τ

=
∫
M

BV τ dΩ∫
M

V τ dΩ
, IID

α,γ

= II − γ(lnV )ng and λ1 indicates the Neumann

first (nonzero) eigenvalue of the affine Laplacian ∆̃Dα,γ

, i.e., there exists some

non-trivial ϕ such that ∆̃Dα,γ

ϕ = −λ1ϕ with Neumann boundary condition
ϕn = 0.

Remark 1.1. The following are some classical or more recent De Lellis-Topping
type inequalities which can be derived by the inequalities (1.3)-(1.4).

(I) In the case α = γ = 0, it is easy to see from (1.2) that

V γ−αRicD
α,γ

= Ric.

For the case α = γ = 0, taking T = Ric, K1 = 0 and ∂M = ∅ in Theorem 1.1,
we get classical De Lellis-Topping inequalities shown by De Lellis and Topping
[10, Theorem 1.1]. On the other hand, for the case α = γ = 0, taking ∂M = ∅
in Theorem 1.1, we get De Lellis-Topping type inequalities shown by Cheng
[7, Theorem 1.7].

(II) In the case α = 0, γ = 1, it is easy to see from (1.2) that

V γ−αRicD
α,γ

= V

(
Ric− ∇̃2V

V
+

(∆̃V )

V
g̃

)
,

where Ric− ∇̃2V
V + (∆̃V )

V g̃ is exactly the static Ricci tensor, see [24]. For the case
α = 0, γ = 1, taking T = Ric, K1 = 0 and ∂M = ∅ in Theorem 1.1, we get a
weighted De Lellis-Topping type inequality shown by Li and Xia [24, Theorem
6.1]. On the other hand, for the case α = 0, γ = 1, taking ∂M = ∅ in Theorem
1.1, we get De Lellis-Topping type inequalities shown by Zeng [31, Theorem
1.2].

(III) In the case α = 1
n−1 , γ = 0, it is easy to see from (1.2) that

V γ−αRicD
α,γ

= e−
1

n−1 f (Ric− ∇̃2f +
1

n− 1
df ⊗ df),

where Ric−∇̃2f + 1
n−1df ⊗df is 1-Bakry-Émery Ricci tensor in the literature

which was introduced by Bakry and Émery [2]. For the case α = 1
n−1 , γ = 0,

Theorem 1.1 gives new De Lellis-Topping type inequalities when the 1-Bakry-
Émery Ricci curvature is bounded from below by a negative function. We list
the inequalities as follows:

Corollary 1.2. Let (Mn, g̃, efdΩ) be a smooth weighted Riemannian manifold

with n ≥ 3 and boundary ∂M . Let D
1

n−1 ,0 be the affine connection defined as
in (1.1) in the case α = 1

n−1 , γ = 0. Let T be a symmetric (0, 2)-tensor such

that T (n, ·) ≥ 0 along the boundary and divT = c∇̃B, where B = trg̃T denotes
its trace and c is a constant. If

Ric− ∇̃2f +
1

n− 1
df ⊗ df ≥ −(n− 1)K1e

1
n−1 f g̃



GEOMETRIC INEQUALITIES FOR AFFINE CONNECTIONS 437

for some nonnegative constant K1, and K2 = max(e
1

n−1 f |∇̃D
1

n−1
,0

f |2), and

IID
1

n−1
,0

≥ 0, then

(1.5)
(nc− 1)2

n2

∫
M

V τ (B −B
V τ

)2 dΩ ≤ Cn,K1,K2,λ1

∫
M

V τ

∣∣∣∣T − B

n
g̃

∣∣∣∣2 dΩ

and, equivalently,

(1.6)
(nc− 1)2

n

∫
M

V τ

∣∣∣∣∣T − B
V τ

n
g̃

∣∣∣∣∣
2

dΩ ≤ C̃n,K1,K2,λ1

∫
M

V τ

∣∣∣∣T − B

n
g̃

∣∣∣∣2 dΩ,

where

Cn,K1,K2,λ1
=

n− 1

n
+

1

λ1

[
(n− 1)K1 +

n2 + n

(n− 1)2
K2

+
2

n− 1

√
[λ1 + (n− 1)K1](n2 + n)K2

]
,

C̃n,K1,K2,λ1 =
(nc− 1)2 + n− 1

n
+

1

λ1

[
(n− 1)K1 +

n2 + n

(n− 1)2
K2

+
2

n− 1

√
[λ1 + (n− 1)K1](n2 + n)K2

]
,

B
V τ

=
∫
M

BV τ dΩ∫
M

V τ dΩ
, τ = n+1

n−1 and λ1 indicates the Neumann first (nonzero)

eigenvalue of the affine Laplacian ∆̃D
1

n−1
,0

, i.e., there exists some non-trivial

ϕ such that ∆̃D
1

n−1
,0

ϕ = −λ1ϕ with Neumann boundary condition ϕn = 0.

In the following, we consider the eigenvalue problem with Robin boundary
condition:

(1.7)

{
∆̃Dα,γ

ϕ = −τϕ, in M,
ϕ cos θ + V γϕn sin θ = 0, on ∂M,

where θ ∈ [0, π) is a constant.
Clearly, if θ = 0 and θ = π

2 respectively, we see that the Robin boundary
problem (1.7) reduces to the Dirichlet boundary problem for PDE

(1.8)

{
∆̃Dα,γ

ϕ = −ξϕ, in M,
ϕ = 0, on ∂M,

and the Neumann boundary problem for PDE

(1.9)

{
∆̃Dα,γ

ϕ = −λϕ, in M,
ϕn = 0, on ∂M.

Denote by τ1 the first (nonzero) eigenvalues of (1.7). Then, we obtain the
following:
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Theorem 1.3. Let (Mn, g̃, V = ef ) be an n-dimensional compact Riemannian

triple with RicD
α,γ

≥ (n − 1)V α−γ g̃. Then the first (nonzero) eigenvalues of
eigenvalue problem (1.7) satisfy

τ21 − nτ1 ≥
{

C1(M,f, ϕ, θ), if θ ̸= π
2 ,

C2(M,f, ϕ, θ), if θ ̸= 0,

where

C1(M,f, ϕ, θ)

=
n

n− 1

∫
∂M

V τ

[
2V −γ tan θ

∣∣∇Dα,γ

(V γϕn)
∣∣2 + IID

α,γ
(
∇Dα,γ

ϕ,∇Dα,γ

ϕ
)

+
(
HDα,γ

V −α − (n− 1) tan θ
)
V 2γ−αϕ2

n

]
dA ·

(∫
M

V τϕ2 dΩ

)−1

and

C2(M,f, ϕ, θ)

=
n

n− 1

∫
∂M

V τ

[
2V −γ cot θ

∣∣∇Dα,γ

ϕ
∣∣2 + IID

α,γ
(
∇Dα,γ

ϕ,∇Dα,γ

ϕ
)

+
(
HDα,γ

V −α cot2 θ − (n− 1) cot θ
)
V −αϕ2

]
dA ·

(∫
M

V τϕ2 dΩ

)−1

.

Consequently, by taking ∂M = ∅, θ = 0 and θ = π
2 respectively, we have the

following:

Corollary 1.4 ([23]). Let (Mn, g̃, V = ef ) be an n-dimensional compact Rie-

mannian triple with RicD
α,γ

≥ (n − 1)V α−γ g̃. Then we have the following
results.

(a) Assume that ∂M = ∅. Then

η1 ≥ n.

(b) Assume that ∂M ̸= ∅ and ∂M satisfies HDα,γ ≥ 0. Then

ξ1 ≥ n.

(c) Assume that ∂M ̸= ∅ and ∂M satisfies IID
α,γ ≥ 0. Then

λ1 ≥ n.

Here η1, ξ1 and λ1 indicate the closed, the Dirichlet and the Neumann first

(nonzero) eigenvalue of the affine Laplacian ∆̃Dα,γ

.

From Theorem 1.3, we have the following Lichnerowicz type estimate for

the first (nonzero) eigenvalue of the affine Laplacian ∆̃Dα,γ

with the Robin
boundary condition on Riemannian manifolds.

Theorem 1.5. Let (Mn, g̃, V = ef ) be an n-dimensional compact Riemannian

triple with RicD
α,γ

≥ (n− 1)V α−γ g̃. Then we have the following results.
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(i) Assume that ∂M satisfies IID
α,γ ≥ 0 and HDα,γ ≥ [(n − 1) tan θ]V α,

θ ∈ [0, π
2 ). Then

τ1 ≥ n.

(ii) Assume that there is a nonzero eigenfunction ϕ with respect to τ1 satis-
fying

ϕ = const., ϕ cos θ + V γϕn sin θ = 0, on ∂M,

and HDα,γ

cot2 θ ≥ [(n− 1) cot θ]V α, θ ∈ (0, π
2 ]. Then

τ1 ≥ n.

Remark 1.2. In particular, if α = γ = 0, then Theorems 1.3 and 1.5 reduce to
[29, Theorem 1.1], [29, Theorem 1.2] and [29, Theorem 1.3], respectively.

The rest of this paper is organized as follows. In Section 2, we recall the
notations and the Reilly type integral formula under affine connections. In
Section 3, we prove Theorem 1.1. In Section 4, we prove Theorems 1.3 and 1.5.

2. Preliminaries

In this section, we recall some preliminary results in Li and Xia [23].

2.1. Torsion-free affine connections Dα,γ

For two real constants α, γ and two vector fields X, Y on M , a 2-parameter
family of affine connections Dα,γ is defined by

Dα,γ
X Y := ∇̃XY + αdf(X)Y + αdf(Y )X + γg̃(X,Y )∇̃f,

where f is a smooth function defined on M . One can check that Dα,γ
X Y is

torsion-free.

2.2. Affine gradient, affine Hessian and affine Laplacian

For a bounded domain Ω with boundary Σ in an n-dimensional smooth
Riemannian triple (Mn, g̃, V = ef ).

(1) The affine gradient on Ω and Σ are defined, respectively, by

∇̃Dα,γ

ϕ := V γ−α∇̃ϕ, ∇Dα,γ

ϕ := V γ−α∇ϕ.

(2) The affine Hessian ∇̃2,Dα,γ

ϕ and affine Laplacian ∆̃Dα,γ

ϕ on Ω are de-
fined, respectively, by

∇̃2,Dα,γ

ϕ := Dα,γ(V γ−α∇̃ϕ)

= V γ−α[∇̃2ϕ+ γdf ⊗ dϕ+ γdϕ⊗ df + α⟨∇̃f, ∇̃ϕ⟩g̃],

and

∆̃Dα,γ

ϕ := trg̃(∇̃2,Dα,γ

ϕ) = V γ−α[∆̃ϕ+ (2γ + nα)⟨∇̃f, ∇̃ϕ⟩].
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2.3. Reilly type integral formula

Lemma 2.1 ([23]). Let W be any smooth vector field on M . Then

(2.1) V τDα,γ
i W i = ∇̃i(V

τW i)

is a divergent form with respect to the Riemannian volume form dΩ, where
τ = (n+ 1)α+ γ and we adopt the Einstein convention.

The following Reilly type integral formula with respect to Dα,γ has been
proved:

Lemma 2.2 ([23]). Let (Mn, g̃, V = ef ) be an n-dimensional compact Rie-
mannian triple with n ≥ 3 and boundary ∂M . Let Dα,γ be the affine connection
defined as in (1.1) and τ = (n + 1)α + γ. Let ϕ be a smooth function on a
bounded domain Ω ⊂ M with smooth boundary Σ. Then the following integral
formula holds:∫

Ω

V τ

[(
∆̃Dα,γ

ϕ
)2

−
∣∣∣∇̃2,Dα,γ

ϕ
∣∣∣2
g̃
− RicD

α,γ

(∇̃Dα,γ

ϕ, ∇̃Dα,γ

ϕ)

]
dΩ(2.2)

=

∫
Σ

V τ

[
HDα,γ

⟨∇̃Dα,γ

ϕ,n⟩2 + IID
α,γ
(
∇Dα,γ

ϕ,∇Dα,γ

ϕ
)

− 2V −γ
〈
∇Dα,γ

ϕ,∇Dα,γ

(V γϕn)
〉]

dA,

where

IID
α,γ

= II − γ(lnV )ng

and

HDα,γ

= H + (n− 1)α(lnV )n.

3. Proof of Theorem 1.1

Let ∇̃ denote the Levi-Civita connection on (M, g̃) and also the induced
connections on tensor bundles on M . Let T be a symmetric (0, 2)-tensor field

on M and denote by B the trace of T . Denote by B
V τ

=
∫
M

BV τ dΩ∫
M

V τ dΩ
and set

T̊ = T − B
n g̃. We adopt the Einstein convention.

We note that if c = 1
n , then

(nc− 1)2
∫
M

V τ (B −B
V τ

)2 dΩ = 0

and inequality (1.3) or (1.4) follows trivially. Hence, it suffices to prove the
case c ̸= 1

n .

Now, let us suppose that c ̸= 1
n . By the assumption divT = c∇̃B,

(3.1) divT̊ = div

(
T − B

n
g̃

)
=

nc− 1

n
∇̃B.



GEOMETRIC INEQUALITIES FOR AFFINE CONNECTIONS 441

We let u : M → R be the unique solution to the following PDE with the
Neumann boundary condition

(3.2)

{
∆̃Dα,γ

u = B −B
V τ

, in M,
un = 0, on ∂M.

Recall that ∆̃Dα,γ

u = V γ−α[∆̃u + (2γ + nα)⟨∇̃f, ∇̃u⟩]. The existence and
uniqueness of equation (3.2) is due to the standard elliptic PDE theory (refer
to [13]).

Under the local coordinates {∂i}, by using (3.2) and the divergence theorem,
we have

(nc− 1)

∫
M

(
B −B

V τ)2
V τ dΩ(3.3)

= (nc− 1)

∫
M

(
B −B

V τ)
V τ ∆̃Dα,γ

udΩ

= (nc− 1)

∫
M

(
B −B

V τ)
∇̃i

(
V τ ∇̃Dα,γ

i u
)
dΩ

= − (nc− 1)

∫
M

V τ ∇̃iB∇̃Dα,γ

i udΩ,

where we have used in the second equality the fact that

V τ ∆̃Dα,γ

u = ∇̃i(V
τ ∇̃Dα,γ

i u)

(see Lemma 2.1).
Using (3.1) and (3.3), we have

(nc− 1)

∫
M

(
B −B

V τ)2
V τ dΩ(3.4)

= − n

∫
M

T̊ij,jV
τ ∇̃Dα,γ

i udΩ

= − n

∫
M

T̊ij,jV
τ+γ−α∇̃iudΩ

= n

∫
M

T̊ij∇̃j

(
V τ+γ−α∇̃iu

)
dΩ− n

∫
∂M

T̊
(
V τ+γ−α∇̃u,n

)
dA

= n

∫
M

T̊ij∇̃j

(
V τ+γ−α∇̃iu

)
dΩ− n

∫
∂M

(T − B

n
g̃)
(
V τ+γ−α∇̃u,n

)
dA

≤ n

∫
M

T̊ij∇̃j

(
V τ+γ−α∇̃iu

)
dΩ,

where in the last inequality we have used un = 0 and T (n, ·) ≥ 0 on ∂M .
By a direct calculation, we know

(3.5) ∇̃j

(
V τ+γ−α∇̃iu

)
= V τ+γ−α [uij + (τ + γ − α)uifj ] .
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Recall that

∇̃2,Dα,γ

u = V γ−α
[
∇̃2u+ γdf ⊗ du+ γdu⊗ df + α⟨∇̃u, ∇̃f⟩g̃

]
.

Under the local coordinates {∂i}, we have

(3.6) uij = V α−γ(∇̃2,Dα,γ

u)ij − γuifj − γfiuj − αukfkg̃ij .

Combining (3.5) and (3.6), we have

∇̃j

(
V τ+γ−α∇̃iu

)
= V τ+γ−α

[
V α−γ(∇̃2,Dα,γ

u)ij − γuifj − γfiuj(3.7)

− αukfkg̃ij + (τ + γ − α)uifj
]
.

Substituting (3.7) into (3.4), we have

(nc− 1)

∫
M

(
B −B

V τ)2
V τ dΩ(3.8)

≤ n

∫
M

T̊ij∇̃j

(
V τ+γ−α∇̃iu

)
dΩ

= n

∫
M

T̊ijV
τ
(
(∇̃2,Dα,γ

u)ij+(τ−γ−α)V γ−αuifj−αV γ−αukfkg̃ij

)
dΩ

= n

∫
M

T̊ijV
τDij dΩ

= n

∫
M

T̊ijV
τ D̊ij dΩ

≤ n

(∫
M

V τ |T̊ij |2 dΩ
) 1

2
(∫

M

V τ |D̊ij |2 dΩ
) 1

2

,

where
Dij = (∇̃2,Dα,γ

u)ij + V γ−α [(τ − γ − α)uifj − αukfkg̃ij ]

and

D̊ij = Dij −
1

n
trg̃(Dij)g̃ij .

It is easy to check that trg̃(Dij) = ∆̃Dα,γ

u. By the Cauchy-Schwarz inequality,
we have

|D̊ij |2(3.9)

= |Dij |2 −
1

n

(
∆̃Dα,γ

u
)2

=
∣∣∣(∇̃2,Dα,γ

u)ij + V γ−α [(τ − γ − α)uifj − αukfkg̃ij ]
∣∣∣2 − 1

n

(
∆̃Dα,γ

u
)2

=
∣∣∣(∇̃2,Dα,γ

u)ij

∣∣∣2 + 2V γ−α(∇̃2,Dα,γ

u)ij [(τ − γ − α)uifj − αukfkg̃ij ]

+ V 2(γ−α) [(τ − γ − α)uifj − αukfkg̃ij ]
2 − 1

n

(
∆̃Dα,γ

u
)2

≤
∣∣∣(∇̃2,Dα,γ

u)ij

∣∣∣2 + δ
∣∣∣(∇̃2,Dα,γ

u)ij

∣∣∣2
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+
1

δ
V 2(γ−α) [(τ − γ − α)uifj − αukfkg̃ij ]

2

+ V 2(γ−α) [(τ − γ − α)uifj − αukfkg̃ij ]
2 − 1

n

(
∆̃Dα,γ

u
)2

= (1 + δ)
∣∣∣(∇̃2,Dα,γ

u)ij

∣∣∣2 + (1 +
1

δ
)V 2(γ−α) [(τ − γ − α)uifj − αukfkg̃ij ]

2

− 1

n

(
∆̃Dα,γ

u
)2

,

where δ is a positive constant to be determined. Since

[(τ − γ − α)uifj − αukfkg̃ij ]
2

= (τ − γ − α)2u2
i f

2
j + nα2u2

kf
2
k − 2α(τ − γ − α)ukfkuifi

= [(τ − γ − α)2 + nα2]u2
i f

2
j − 2α(τ − γ − α)⟨∇̃u, ∇̃f⟩2

= [(τ − γ − α)2 + nα2]u2
i f

2
j − 2nα2⟨∇̃u, ∇̃f⟩2

≤ [(τ − γ − α)2 + nα2]u2
i f

2
j .

Combine this with (3.9), and we have

|D̊ij |2 ≤ (1 + δ)
∣∣∣(∇̃2,Dα,γ

u)ij

∣∣∣2 − 1

n

(
∆̃Dα,γ

u
)2

(3.10)

+ (1 +
1

δ
)[(τ − γ − α)2 + nα2]V 2(γ−α)u2

i f
2
j .

And then ∫
M

V τ |D̊ij |2 dΩ(3.11)

≤ (1 + δ)

∫
M

V τ |(∇̃2,Dα,γ

u)ij |2 dΩ

+ (1 +
1

δ
)[(τ − γ − α)2 + nα2]

∫
M

V τ |∇̃Dα,γ

u|2|∇̃f |2 dΩ

− 1

n

∫
M

V τ
(
∆̃Dα,γ

u
)2

dΩ

≤ (1 + δ)

∫
M

V τ |(∇̃2,Dα,γ

u)ij |2 dΩ

+ (1 +
1

δ
)[(τ − γ − α)2 + nα2]K2

∫
M

V τ+α−γ |∇̃Dα,γ

u|2 dΩ

− 1

n

∫
M

V τ
(
∆̃Dα,γ

u
)2

dΩ,

where we use K2 = max(V α−γ |∇̃Dα,γ

f |2).
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Since V γ−αRicD
α,γ

≥ −(n−1)K1g, and IID
α,γ ≥ 0, by the integral formula

(2.2) and boundary condition in (3.2) we have∫
M

V τ
∣∣∣∇̃2,Dα,γ

u
∣∣∣2 dΩ(3.12)

≤ −
∫
M

V τRicD
α,γ

(∇̃Dα,γ

u, ∇̃Dα,γ

u) dΩ +

∫
M

V τ
(
∆̃Dα,γ

u
)2

dΩ

≤
∫
M

V τ
(
∆̃Dα,γ

u
)2

dΩ + (n− 1)K1

∫
M

V τ+α−γ
∣∣∣∇̃Dα,γ

u
∣∣∣2 dΩ.

Therefore, (3.11) becomes∫
M

V τ |D̊ij |2 dΩ(3.13)

≤
[
(n− 1)(1 + δ)K1 + (1 +

1

δ
)[(τ − γ − α)2 + nα2]K2

]
×
∫
M

V τ+α−γ |∇̃Dα,γ

u|2 dΩ +

(
n− 1

n
+ δ

)∫
M

V τ
(
∆̃Dα,γ

u
)2

dΩ.

Using the Rayleigh-Ritz principle, we note that the Neumann first (nonzero)

eigenvalue λ1 of the affine Laplacian ∆̃Dα,γ

can be characterized by

λ1 = inf

{∫
M

V τ+α−γ |∇̃Dα,γ

u|2 dΩ∫
M

V τu2 dΩ
, 0 ̸= u ∈ C∞(M) and un = 0 on ∂M

}
.

Then, by using the divergence theorem, and the Cauchy-Schwarz inequality

and the fact that V τ ∆̃Dα,γ

u = ∇̃i(V
τ ∇̃Dα,γ

i u), we have∫
M

V τ+α−γ |∇̃Dα,γ

u|2 dΩ(3.14)

=

∫
M

V τ ∇̃Dα,γ

i u∇̃iudΩ

= −
∫
M

u∇̃i(V
τ ∇̃Dα,γ

i u) dΩ +

∫
∂M

V τ ⟨∇̃Dα,γ

u,n⟩dA

= −
∫
M

uV τ ∆̃Dα,γ

udΩ

≤
(∫

M

V τu2 dΩ

) 1
2
(∫

M

V τ
(
∆̃Dα,γ

u
)2

dΩ

) 1
2

≤
(

1

λ1

∫
M

V τ+α−γ |∇̃Dα,γ

u|2 dΩ
) 1

2
(∫

M

V τ
(
∆̃Dα,γ

u
)2

dΩ

) 1
2

,

which gives ∫
M

V τ+α−γ |∇̃Dα,γ

u|2 dΩ ≤ 1

λ1

∫
M

V τ
(
∆̃Dα,γ

u
)2

dΩ(3.15)
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=
1

λ1

∫
M

V τ
(
B −B

V τ)2
dΩ.

Inserting (3.15) into (3.13), we have∫
M

V τ |D̊ij |2 dΩ(3.16)

≤ 1

λ1

[
(n− 1)(1 + δ)K1 + (1 +

1

δ
)[(τ − γ − α)2 + nα2]K2

]
×
∫
M

V τ
(
B −B

V τ)2
dΩ

+

(
n− 1

n
+ δ

)∫
M

V τ
(
B −B

V τ)2
dΩ

=
1

λ1

[
n− 1

n
λ1+(n−1)K1+[(τ−γ−α)2+nα2]K2+[λ1+(n−1)K1]δ

+
[(τ − γ − α)2 + nα2]K2

δ

] ∫
M

V τ
(
B −B

V τ)2
dΩ.

Note that

[λ1 + (n− 1)K1]δ +
[(τ − γ − α)2 + nα2]K2

δ

≥ 2
√
[λ1 + (n− 1)K1][(τ − γ − α)2 + nα2]K2.

Moreover, the equality holds if and only if

δ =

√
[(τ − γ − α)2 + nα2]K2

λ1 + (n− 1)K1
.

Thus if we choose δ =
√

[(τ−γ−α)2+nα2]K2

λ1+(n−1)K1
, then (3.16) becomes∫

M

V τ |D̊ij |2 dΩ(3.17)

≤ 1

λ1

[
n− 1

n
λ1 + (n− 1)K1 + [(τ − γ − α)2 + nα2]K2

+ 2
√
[λ1+(n−1)K1][(τ−γ−α)2+nα2]K2

] ∫
M

V τ
(
B−B

V τ)2
dΩ.

Therefore, combining (3.17) with (3.8) concludes the proof of (1.3). From the
identity ∣∣∣∣∣T − B

V τ

n
g̃

∣∣∣∣∣
2

=

∣∣∣∣T − B

n
g̃

∣∣∣∣2 + 1

n
(B −B

V τ

)2,

we obtain the inequality (1.4). Therefore, we complete the proof of Theorem
1.1.
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4. Proof of Theorems 1.3 and 1.5

We first prove Theorem 1.3.

Proof of Theorem 1.3. We denote by τ1 the first non-zero eigenvalue of eigen-
value problem (1.7). Let ϕ be a nonzero eigenfunction with respect to τ1.

Applying RicD
α,γ

≥ (n− 1)V α−γ g̃ and the Cauchy-Schwarz inequality∣∣∣∇̃2,Dα,γ

ϕ
∣∣∣2
g̃
≥ 1

n

(
∆̃Dα,γ

ϕ
)2

in (2.2) gives∫
M

V τ

[
n− 1

n

(
∆̃Dα,γ

ϕ
)2

− (n− 1)V α−γ |∇̃Dα,γ

ϕ|2
]
dΩ(4.1)

≥
∫
∂M

V τ

[
HDα,γ

⟨∇̃Dα,γ

ϕ,n⟩2 + IID
α,γ
(
∇Dα,γ

ϕ,∇Dα,γ

ϕ
)

− 2V −γ
〈
∇Dα,γ

ϕ,∇Dα,γ

(V γϕn)
〉]

dA.

Using the divergence theorem, we obtain∫
M

V τ
[
V α−γ |∇̃Dα,γ

ϕ|2
]
dΩ(4.2)

=

∫
M

V τ+γ−α|∇̃ϕ|2 dΩ

=

∫
M

V τ ⟨V γ−α∇̃ϕ, ∇̃ϕ⟩dΩ

=

∫
M

V τ ⟨∇̃Dα,γ

ϕ, ∇̃ϕ⟩dΩ

=

∫
∂M

ϕV τ ⟨∇̃Dα,γ

ϕ,n⟩dA−
∫
M

ϕ∇̃i(V
τ ∇̃Dα,γ

i ϕ) dΩ

=

∫
∂M

ϕV τ ⟨∇̃Dα,γ

ϕ,n⟩dA−
∫
M

ϕV τ ∆̃Dα,γ

ϕ dΩ.

Plugging (4.2) into (4.1) yields

(τ21 − nτ1)

∫
M

V τϕ2 dΩ(4.3)

≥ n

n− 1

∫
∂M

V τ

[
HDα,γ

⟨∇̃Dα,γ

ϕ,n⟩2 + IID
α,γ
(
∇Dα,γ

ϕ,∇Dα,γ

ϕ
)

+ (n− 1)ϕ⟨∇̃Dα,γ

ϕ,n⟩ − 2V −γ
〈
∇Dα,γ

ϕ,∇Dα,γ

(V γϕn)
〉]

dA.

If θ ̸= π
2 , it follows from the boundary condition that

ϕ+ V γϕn tan θ = 0.
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This together with (4.3) implies

(τ21 − nτ1)

∫
M

V τϕ2 dΩ(4.4)

≥ n

n− 1

∫
∂M

V τ

[
HDα,γ

V 2(γ−α)ϕ2
n + IID

α,γ
(
∇Dα,γ

ϕ,∇Dα,γ

ϕ
)

− [(n− 1) tan θ]V 2γ−αϕ2
n + 2V −γ tan θ

∣∣∇Dα,γ

(V γϕn)
∣∣2] dA.

Hence, we have

(τ21 − nτ1)(4.5)

≥ n

n−1

∫
∂M

V τ

[
2V −γ tan θ

∣∣∇Dα,γ

(V γϕn)
∣∣2+IID

α,γ
(
∇Dα,γ

ϕ,∇Dα,γ

ϕ
)

+
(
HDα,γ

V −α − (n− 1) tan θ
)
V 2γ−αϕ2

n

]
dA ·

(∫
M

V τϕ2 dΩ

)−1

.

If θ ̸= 0, it follows from the boundary condition that

ϕ cot θ + V γϕn = 0.

By using an analogous argument, we obtain the following inequality:

(τ21 − nτ1)

∫
M

V τϕ2 dΩ(4.6)

≥ n

n− 1

∫
∂M

V τ

[
HDα,γ

V −2αϕ2 cot2 θ + IID
α,γ
(
∇Dα,γ

ϕ,∇Dα,γ

ϕ
)

− [(n− 1) cot θ]V −αϕ2 + 2V −γ cot θ
∣∣∇Dα,γ

ϕ
∣∣2] dA.

Hence, we have

(τ21 − nτ1)(4.7)

≥ n

n− 1

∫
∂M

V τ

[
2V −γ cot θ

∣∣∇Dα,γ

ϕ
∣∣2 + IID

α,γ
(
∇Dα,γ

ϕ,∇Dα,γ

ϕ
)

+
(
HDα,γ

V −α cot2 θ−(n−1) cot θ
)
V −αϕ2

]
dA ·

(∫
M

V τϕ2 dΩ

)−1

.

This completes the proof of Theorem 1.3. □

Next we prove Theorem 1.5.

Proof of Theorem 1.5. (i) By the assumption we have

V −γ tan θ
∣∣∇Dα,γ

(V γϕn)
∣∣2 ≥ 0,

IID
α,γ
(
∇Dα,γ

ϕ,∇Dα,γ

ϕ
)
≥ 0

and (
HDα,γ

V −α − (n− 1) tan θ
)
V 2γ−αϕ2

n ≥ 0.
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Therefore C1(M,f, ϕ, θ) ≥ 0. This together with Theorem 1.3 implies that
τ21 − nτ1 ≥ 0. So τ1 ≥ n.

(ii) By the assumption we have

V −γ cot θ
∣∣∇Dα,γ

ϕ
∣∣2 = 0, IID

α,γ
(
∇Dα,γ

ϕ,∇Dα,γ

ϕ
)
= 0

and (
HDα,γ

V −α cot2 θ − (n− 1) cot θ
)
V −αϕ2 ≥ 0.

Therefore C2(M,f, ϕ, θ) ≥ 0. This together with Theorem 1.3 implies that
τ21 − nτ1 ≥ 0. So τ1 ≥ n. This completes the proof of Theorem 1.5. □
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