• Title/Summary/Keyword: aerospace materials

Search Result 1,090, Processing Time 0.03 seconds

Protective SiC Coating on Carbon Fibers by Low Pressure Chemical Vapor Deposition

  • Bae, Hyun Jeong;Kim, Baek Hyun;Kwon, Do-Kyun
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.702-707
    • /
    • 2013
  • High-quality ${\beta}$-silicon carbide (SiC) coatings are expected to prevent the oxidation degradation of carbon fibers in carbon fiber/silicon carbide (C/SiC) composites at high temperature. Uniform and dense ${\beta}$-SiC coatings were deposited on carbon fibers by low-pressure chemical vapor deposition (LP-CVD) using silane ($SiH_4$) and acetylene ($C_2H_2$) as source gases which were carried by hydrogen gas. SiC coating layers with nanometer scale microstructures were obtained by optimization of the processing parameters considering deposition mechanisms. The thickness and morphology of ${\beta}$-SiC coatings can be controlled by adjustment of the amount of source gas flow, the mean velocity of the gas flow, and deposition time. XRD and FE-SEM analyses showed that dense and crack-free ${\beta}$-SiC coating layers are crystallized in ${\beta}$-SiC structure with a thickness of around 2 micrometers depending on the processing parameters. The fine and dense microstructures with micrometer level thickness of the SiC coating layers are anticipated to effectively protect carbon fibers against the oxidation at high-temperatures.

Activation Energy and Interface Reaction of Sn-40Pb/Cu & Sn-3.0Ag-0.5Cu/Cu (Sn-40Pb/Cu 및 Sn-3.0Ag-0.5Cu/Cu 접합부 계면반응 및 활성화에너지)

  • Kim, Whee-Sung;Hong, Won-Sik;Park, Sung-Hun;Kim, Kwang-Bae
    • Korean Journal of Materials Research
    • /
    • v.17 no.8
    • /
    • pp.402-407
    • /
    • 2007
  • In electronics manufacturing processes, soldering process has generally been used in surface mounting technology. Because of environmental restriction, lead free solders as like a SnAgCu ternary system are being used widely. After soldering process, the formation and growth of intermetalic compounds(IMCs) are formed in the interface between solder and Cu substrate as follows isothermal temperature and time. In this studies, therefore, we investigated the effects of the Cu substrate thickness on the IMC formation and growth of Sn-40Pb/Cu and Sn-3.0Ag-0.5Cu/Cu solder joints, respectively. The effect of the Cu thickness in PCB Cu pad and pure Cu plate was analyzed as measuring of thickness of each IMC. After solder was soldered on PCB and Cu plate which have different Cu thickness, we measured the IMC thickness in solder joints respectively. Also we compared with the effectiveness of Cu thickness on the IMC growth. From these results, we calculated the activation energy.

Buckling Characteristics of Skin-Stringer Composite Stiffened Panel

  • Noh, Ji-Sub;Ghim, Yeong-Taek;Shin, Joon-Hyung;Kwon, Bo-Seong;Byun, Joon-Hyung;Nam, Young-Woo;Kweon, Jin-Hwe
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.6
    • /
    • pp.68-73
    • /
    • 2020
  • Skin-stringer structures are widely used in aircrafts due to their advantage of minimizing structural weight while maintaining load carrying capacity. However, buckling load can cause serious damage to these structures. Therefore, the buckling characteristics of skin-stringer structures should be carefully considered during the design phase to ensure structural soundness. In this study, finite element method was applied to predict the buckling characteristics of stiffened panels. In terms of the failure mode, finite element analysis showed a symmetrical buckling mode, whereas an asymmetrical mode was determined by experimentation. The numerical results were obtained and compared to the experimental data, showing a difference of 9.3% with regard to the buckling loads.

Fabrication of Light-weight Ceramic Insulation Materials by Using Oxide Ceramic Fibers for Reusable Thermal Protection Systems (산화물 세라믹섬유를 이용한 재사용 열보호시스템용 경량 세라믹 단열소재의 제조)

  • Seongwon, Kim;Min-Soo, Nam;Yoon-Suk, Oh;Sahn, Nahm;Jaesung, Shin;Hyeonjun, Kim;Bum-Seok, Oh
    • Journal of Powder Materials
    • /
    • v.29 no.6
    • /
    • pp.477-484
    • /
    • 2022
  • Thermal protection systems (TPS) are a group of materials that are indispensable for protecting spacecraft from the aerodynamic heating occurring during entry into an atmosphere. Among candidate materials for TPS, ceramic insulation materials are usually considered for reusable TPS. In this study, ceramic insulation materials, such as alumina enhanced thermal barrier (AETB), are fabricated via typical ceramic processing from ceramic fiber and additives. Mixtures of silica and alumina fibers are used as raw materials, with the addition of B4C to bind fibers together. Reaction-cured glass is also added on top of AETB to induce water-proof functionality or high emissivity. Some issues, such as the elimination of clumps in the AETB, and processing difficulties in the production of reusable surface insulation are reported as well.

Study on Friction Energy of Rubber Block Under Vertical Load and Horizontal Velocity (고무블록의 수직 하중 및 수평 속도에 따른 마찰에너지 연구)

  • Kim, Jin Kyu;Yoo, Sai Rom;Lee, Il Yong;Kim, Doo Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.905-912
    • /
    • 2013
  • Rubber is one of the most commonly used materials in various fields because of its unique viscoelastic properties. Friction occurs when a tire constantly makes contact with the ground. As a result, friction causes wear. The frictional energy caused by friction is a primary factor in the wear mechanism. The frictional energy is affected by various conditions (temperature, roughness of ground, shape of rubber, load, and materials). In this study, the analysis was preceded by considering the vertical load and the horizontal velocity to the rubber using ABAQUS/explicit. The contact pressure, and friction energy are derived using the shear force and slip distance. The actual behavior of the rubber test data were compared with the analysis results.

Monitoring of a CFRP-Stiffened Panel Manufactured by VaRTM Using Fiber-Optic Sensors

  • Takeda, Shin-Ichi;Mizutani, Tadahito;Nishi, Takafumi;Uota, Naoki;Hirano, Yoshiyasu;Iwahori, Yutaka;Nagao, Yosuke;Takeda, Nobuo
    • Advanced Composite Materials
    • /
    • v.17 no.2
    • /
    • pp.125-137
    • /
    • 2008
  • FBG (Fiber Bragg Grating) sensors and optical fibers were embedded into CFRP dry preforms before resin impregnation in VaRTM (Vacuum-assisted Resin Transfer Molding). The embedding location was the interface between the skin and the stringer in a CFRP-stiffened panel. The reflection spectra of the FBG sensors monitored the strain and temperature changes during all the molding processes. The internal residual strains of the CFRP panel could be evaluated during both the curing time and the post-curing time. The temperature changes indicated the differences between the dry preform and the outside of the vacuum bagging. After the molding, four-point bending was applied to the panel for the verification of its structural integrity and the sensor capabilities. The optical fibers were then used for the newly-developed PPP-BOTDA (Pulse-PrePump Brillouin Optical Time Domain Analysis) system. The long-range distributed strain and temperature can be measured by this system, whose spatial resolution is 100 mm. The strain changes from the FBGs and the PPP-BOTDA agreed well with those from the conventional strain gages and FE analysis in the CFRP panel. Therefore, the fiber-optic sensors and its system were very effective for the evaluation of the VaRTM composite structures.

Research on the Model, Structure and Characteristics of a New Vibration Generator

  • Zhang, Qing-Xin;Yu, Li;Lin, Tong;Gao, Yun-Hong;Wang, Lu-Ping
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.6
    • /
    • pp.335-340
    • /
    • 2016
  • The vibrational energy is prevalent in the natural environment, which is studied by energy researchers as a new energy resource in recent years. Vibration generation utilizes electromagnetic induction technology, piezoelectric technology and certain characteristics of smart materials to convert mechanical energy into electrical energy. In this paper, a new method of using MSMA (magnetic shape memory alloy) to generate electricity is proposed and the principle of generating electricity is demonstrated. Martensitic variants and magnetic domain characteristics of MSMA are analyzed. Combining with Gibbs free energy function thermal theory, the mathematics model of MSMA vibration generator is established. The basic structure of MSMA vibration generator is designed and simulation is done to analyze that the effects of generator output voltage when the input amplitude and frequency of vibration stress change. The simulation experiments verify the feasibility of using MSMA to make the micro vibration generators and the correctness of the mathematical model, which lays a good foundation for the further research and application of MSMA vibration generator.

CRUSHING CHARACTERISTIC OF DOUBLE HAT-SHAPED MEMBERS OF DIFFERENT MATERIALS JOINED BY ADHESIVE BONDING AND SELF-PIERCING RIVET

  • Lee, M.H.;Kim, H.Y.;Oh, S.I.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.565-570
    • /
    • 2006
  • The development of a light-weight vehicle is in great demand for enhancement of fule efficiency and dynamic performance. The vehicle weight can be reduced effectively by using lightweight materials such as aluminum and magnesium. However, if such materials are used in vehicles, there are often instances when different materials such as aluminum and steel need to be joined to each other. The conventional joining method, namely resistance spot welding, cannot be used in joining different materials. Self-piercing rivet(SPR) and adhesive bonding, however, are good alternatives to resistance spot welding. This paper is concerned with the crushing test of double hat-shaped member made by resistance spot welding, SPR and adhesive bonding. Various parameters of crashworthiness are analyzed and evaluated. Based on these results, the applicability of SPR and adhesive bonding are proposed as an alternative to resistance spot welding.

Thermal Development from Hybrid Gels of Compounds for Use in Fibre-Reinforced Oxide Ceramics

  • MacKenzie, Kenneth J.D.;Kemmitt, Tim;Meinhold, Richard H.;Schmucker, Martin;Mayer, Lutz
    • The Korean Journal of Ceramics
    • /
    • v.4 no.4
    • /
    • pp.323-330
    • /
    • 1998
  • Mixed oxide compounds of potential usefulness for fibre coatings (hexagonal celsian, $BaAl_2Si_2O_8$ and lanthanum hexaluminate, $LaAl_{11}O_{18}$) or for matrix materials (yttrium aluminium garnet, $Y_3Al_5O_{12}$) were prepared by hybrid sol-gel synthesis and their thermal crystallisation was monitored by thermal analysis, X-ray diffraction and multinuclear solid state MAS NMR. All the gels convert to the crystalline phase below about $12200^{\circ}C$, via amorphous intermediates in which the Al shows and NMR resonance at 36-38 ppm sometimes ascribed to Al in 5-fold coordination. Additional information about the structural changes during thermal treatment was provided by $^{29}Si$, $^{137}Ba$ and $^{89}Y$ MAS NMR spectroscopy, showing that the feldspar framework of celsian begins to be established by about $500^{\circ}C$ but the Ba is still moving into its polyhedral lattice sites about $400^{\circ}C$ after the sluggish onset of crystallization. Lanthanum hexaluminate and YAG crystallise sharply at 1230 and $930^{\circ}C$ respectively, the former via $\gamma-Al_2O_3$, the latter via $YAlO_3$. Yttrium moves into the garnet lattice sites less than $100^{\circ}C$ after crystallisation.

  • PDF