Browse > Article
http://dx.doi.org/10.4313/TEEM.2016.17.6.335

Research on the Model, Structure and Characteristics of a New Vibration Generator  

Zhang, Qing-Xin (Automation Institute, Shenyang Aerospace University)
Yu, Li (Automation Institute, Shenyang Aerospace University)
Lin, Tong (Automation Institute, Shenyang Aerospace University)
Gao, Yun-Hong (Automation Institute, Shenyang Aerospace University)
Wang, Lu-Ping (Automation Institute, Shenyang Aerospace University)
Publication Information
Transactions on Electrical and Electronic Materials / v.17, no.6, 2016 , pp. 335-340 More about this Journal
Abstract
The vibrational energy is prevalent in the natural environment, which is studied by energy researchers as a new energy resource in recent years. Vibration generation utilizes electromagnetic induction technology, piezoelectric technology and certain characteristics of smart materials to convert mechanical energy into electrical energy. In this paper, a new method of using MSMA (magnetic shape memory alloy) to generate electricity is proposed and the principle of generating electricity is demonstrated. Martensitic variants and magnetic domain characteristics of MSMA are analyzed. Combining with Gibbs free energy function thermal theory, the mathematics model of MSMA vibration generator is established. The basic structure of MSMA vibration generator is designed and simulation is done to analyze that the effects of generator output voltage when the input amplitude and frequency of vibration stress change. The simulation experiments verify the feasibility of using MSMA to make the micro vibration generators and the correctness of the mathematical model, which lays a good foundation for the further research and application of MSMA vibration generator.
Keywords
Magnetic shape memory alloy; Vibration generators; Mathematics model; Output characteristics; Simulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Bin. Ph. D. Study of multi-directional vibration energy collection system based on piezoelectric material, Nanjing University of Aeronautics and Astronautics, Nanjing (2009). [DOI: http://dx.chinadoi.cn/10.7666%2fd.d076335]
2 L. Tao. Ph. D. Fabrication and Testing of Micro Piezoelectric Power Generator for Harvesting Ambient Vibration Energy Dalian: Dalian University of Technology (2009). [DOI: http://dx.chinadoi.cn/10.7666%2fd.y1601191]
3 W. Yumei, J. X. fang, and Y. Jin, Chinese Journal of Sensors and Actuators, 22, 1243 (2009). [DOI: http://dx.chinadoi.cn/10.3969%2fj.issn.1004-1699.2009.09.005]
4 C. Huiyun, Ph. D. Design of Micro Electromagnetic Vibration Energy Harvester and Storage System, Inner Mongolia University of Science and Technology, Hohhot (2012). [DOI: http://dx.chinadoi.cn/10.7666%2fd.D291681]
5 Z. ping, T. Gang, and C. G. Ming, Piezoelectrics & Acoustooptics, 30, 230 (2008). [DOI: http://dx.chinadoi.cn/10.3969%2fj.issn.1004-2474.2008.02.034]
6 R. O'handley, J. Appl. Phys., 83, 3263 (1998). [DOI: http://dx.doi.org/10.1063/1.367094]   DOI
7 O. Aljanaideh, M. A. Janaideh, and S. Rakheja, Smart Materials and Structures, 22, 27 (2013). [DOI: http://dx.doi.org/10.1088/0964-1726/22/2/025027]
8 Q. Zhang, J. Li, L. Yu, and L. Wang, Proc. the 27th Chinese Control and Decision Conference (2015 CCDC, Qingdao, China, 2015) p. 4979. [DOI: http://dx.doi.org/10.1109/CCDC.2015.7162812]
9 N. M. Bruno and C. Ciocanel, Smart Matriasl and Stuctures, 21, 1 (2012). [DOI: http://dx.doi.org/10.1088/0964-1726/21/9/094018]
10 L. Tingting, D. Yubing, and L. Qingmin, Materials Review, 22, 65 (2008). [DOI: http://dx.chinadoi.cn/10.3321%2fj.issn%3a1005-023X.2008.06.016]
11 B. Kieferr, Aerospace Engineering, 10, 56 (2006). [DOI: http://hdl.handle.net/1969.1/4712]
12 Y. Jinyu, Digital Technology and Application, 1, 100 (2011).