• Title/Summary/Keyword: advanced connection type

Search Result 67, Processing Time 0.032 seconds

Developments of Advanced Connection Type for Improvements of Mixed Structures(I) : 3D Nonlinear Analysis of the Various Connection Types for Deriving Advanced Connection Type (혼합구조의 성능 향상을 위한 개선된 접합방식의 개발 (I) : 개선된 접합방식을 도출하기 위한 3차원 비선형 해석)

  • Yun, Ik Jung;Huh, Taik Nyung;Kim, Moon Kyum;Cho, Sung Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.89-94
    • /
    • 2008
  • The problem of interaction between the structures interconnected at discrete points as like composite structures, has a attracted considerable attention for a prolonged period of time. Recently, mixed structures are applied for overcoming structural limits by developed countries. In this paper, advanced connection type of mixed structures are presented by numerical approach. Also it is performed on extensive literature review from theoretical method to numerical analysis. For analysing behaviors of mixed structures according to connection type, 2 different connections and 1 reinforced connection are compared by 3D nonlinear numerical analysis. Nonlinear analysis of mixed structures is carried out by utilizing contact elements of a general purpose structural analysis computer program(ABAQUS). By using 6 criteria, each connections are investigated. From this result, proper reinforcing and well designed connection type are proposed. And results also show that the deflections which are induced by discontinuity on mixed structures, has a linear distribution that should decrease as applying proposed connection type.

Nonlinear Behaviors of Mixed Structure Considering Advanced Connection Types (개선된 접합부 방식을 갖는 혼합구조의 비선형 거동)

  • Huh, Taik-Nyung;Yun, Ik-Jung;Kim, Mun-Kyum;Cho, Sung-Yong;Shim, Byul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.677-682
    • /
    • 2007
  • Nonlinear analysis of mixed structures is carried out by utilizing contact elements of a general finite element analysis computer program(ABAQUS). The present analysis focuses on the enhancing behaviors of mixed structure's connection type. Main 2 issues are related with discontinuity which reduce the stiffness of structure and proposing enhanced connection type. To validate the present study approaching 2 way, analytic one and experimental test.

  • PDF

Preliminary study on the ground behavior at shore connection of submerged floating tunnel using numerical analysis

  • Kang, Seok-Jun;Kim, Jung-Tae;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.133-142
    • /
    • 2020
  • Submerged floating tunnel (SFT) is a type of tunnel which causes the tunnel segments to float in the water. When the SFTs are connected to the ground, the connection between the SFT and the subsea bored tunnel is fragile due to the difference in behavioral characteristics between the two types of tunnels. Therefore, special design and construction methods are needed to ensure the stability of the area around the connection. However, since previous research on the stability of the connection site has not been undertaken enough, the basic step necessitates the evaluation of ground behavior at the shore connection. In this study, the numerical analysis targeting the shore connection between the subsea bored tunnel and the SFT was simulated. The strain concentration at the shore connection was analyzed by numerical simulation and the effects of several factors were examined. The results showed the instability in the ground close to the shore connection due to the imbalance in the behavior of the two types of tunnels; the location of the strain concentration varies with different environmental and structural conditions. It is expected that the results from this study can be utilized in future studies to determine weak points in the shore connection between the submerged floating tunnel and the subsea bored tunnel, and devise methods to mitigate the risks.

Digital evaluation of axial displacement by implant-abutment connection type: An in vitro study

  • Kim, Sung-Jun;Son, KeunBaDa;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.5
    • /
    • pp.388-394
    • /
    • 2018
  • PURPOSE. To measure axial displacement of different implant-abutment connection types and materials during screw tightening at the recommended torque by using a contact scanner for two-dimensional (2D) and three-dimensional (3D) analyses. MATERIALS AND METHODS. Twenty models of missing mandibular left second premolars were 3D-printed and implant fixtures were placed at the same position by using a surgical guide. External and internal fixtures were used. Three implant-abutment internal connection (INT) types and one implant-abutment external connection (EXT) type were prepared. Two of the INT types used titanium abutment and zirconia abutment; the other INT type was a customized abutment, fabricated by using a computer-controlled milling machine. The EXT type used titanium abutment. Screws were tightened at $10N{\cdot}cm$, simulating hand tightening, and then at the manufacturers' recommended torque ($30N{\cdot}cm$) 10 min later. Abutments and adjacent teeth were subsequently scanned with a contact scanner for 2D and 3D analyses using a 3D inspection software. RESULTS. Significant differences were observed in axial displacement according to the type of implant-abutment connection (P<.001). Vertical displacement of abutments was greater than overall displacement, and significant differences in vertical and overall displacement were observed among the four connection types (P<.05). CONCLUSION. Displacement according to connection type and material should be considered in choosing an implant abutment. When adjusting a prosthesis, tightening the screw at the manufacturers' recommended torque is advisable, rather than the level of hand tightening.

Developments of Advanced Connection Type for Improvements of Mixed Structures (II) (혼합구조의 성능 향상을 위한 개선된 접합부의 개발 (II): 개선된 접합방식의 성능확인을 위한 모형실험 및 해석)

  • Yun, Ik Jung;Lho, Byeong Cheol;Kim, Moon Kyum;Cho, Sung Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.207-214
    • /
    • 2008
  • This study presents a way to validate the quality level of the proposed connection type and verify the experimental test, and performs a 3D nonlinear analysis corresponding to the experimental test. Two mixed-structure beams were cast and tested under a four-point static loading. Force-displacement relation, force-strain relation, force-opening width, and failure mode were observed from comparing the numerical results of the adopted FE model. Nonlinear analysis of mixed structures was carried out by utilizing the contact elements of a general purpose structural analysis computer program (ABAQUS). The results of numerical and experimental simulation show that the proposed L-shaped connection has greater stiffness under flexural loading and better structural performance with regard to the connection.

Analysis on the Shear Behavior of Existing Reinforced Concrete Frame Structures Infilled with L-Type Precast Wall Panel (L형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 골조 구조물의 전단 거동 분석)

  • Yu, Sung-Yong;Ju, Ho-Seong;Ha, Soo-Kyoung
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.105-117
    • /
    • 2015
  • The purpose of this study is to develop a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were experimentally performed on one unreinforced beam-column specimen and two reinforced specimens with L-type precast wall panels. The results were analyzed to find that the specimen with anchored connection experienced shear failure, while the other specimen with steel plate connection principally manifested flexural failure. The ultimate strength of the specimens was determined to be the weaker of the shear strength of top connection and flexural strength at the critical section of precast panel. In this setup of L-type panel specimens, if a push loading is applied to the reinforced concrete column on one side and push the precast concrete panel, a pull loading from upper shear connection is to be applied to the other side of the top shear connection of precast panel. Since the composite flexural behavior of the two members govern the total behavior during the push loading process, the ultimate horizontal resistance of this specimen was not directly influenced by shear strength at the top connection of precast panel. However, the RC column and PC wall panel member mainly exhibited non-composite behavior during the pull loading process. The ultimate horizontal resistance was directly influenced by the shear strength of top connection because the pull loading from the beam applied directly to the upper shear connection. The analytical result for the internal shear resistance at the connection pursuant to the anchor shear design of ACI 318M-11 Appendix-D except for the equation to predict the concrete breakout failure strength at the concrete side, principally agreed with the experimental result based on the elastic analysis of Midas-Zen by using the largest loading from experiment.

Sinking and fit of abutment of locking taper implant system

  • Moon, Seung-Jin;Kim, Hee-Jung;Son, Mee-Kyoung;Chung, Chae-Heon
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.2
    • /
    • pp.97-101
    • /
    • 2009
  • STATEMENT OF PROBLEM. Unlike screw-retention type, fixture-abutment retention in Locking taper connection depends on frictional force so it has possibility of abutment to sink. PURPOSE. In this study, Bicon$^{(R)}$ Implant System, one of the conical internal connection implant system, was used with applying loading force to the abutments connected to the fixture. Then the amount of sinking was measured. MATERIAL AND METHODS. 10 Bicon$^{(R)}$ implant fixtures were used. First, the abutment was connected to the fixture with finger force. Then it was tapped with a mallet for 3 times and loads of 20 kg corresponding to masticatory force using loading application instrument were applied successively. The abutment state, slightly connected to the fixture without pressure was considered as a reference length, and every new abutment length was measured after each load's step was added. The amount of abutment sinking (mm) was gained by subtracting the length of abutment-fixture under each loading condition from reference length. RESULTS. It was evident, that the amount of abutment sinking in Bicon$^{(R)}$ Implant System increased as loads were added. When loads of 20 kg were applied more than 5 - 7 times, sinking stopped at $0.45{\pm}0.09\;mm$. CONCLUSION. Even though locking taper connection type implant shows good adaption to occlusal force, it has potential for abutment sinking as loads are given. When locking taper connection type implant is used, satisfactory loads are recommended for precise abutment location.

An Experimental Study on Structural Performance of H-Steel or SRC Column and Flat Plate Slab Connection (플랫 플레이트 슬래브와 H형강 기둥 접합부의 구조 성능에 관한 실험적 연구)

  • Yoon, Myung-Ho;Lee, Yoon-Hee;Ryu, Hong-Sik;Kim, Jin-Won
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.2
    • /
    • pp.9-14
    • /
    • 2014
  • Main topics in this study is a new structural detail for connection between H-Steel or SRC column and flat plate slab. We carried out to evaluate the punching shear performance of H-steel or SRC column + RC slab system for vertical load and lateral load. From the test results structural characteristics - yield moment, yield rotation, maximum moment, deformation capabilities ect. - are obtained and evaluated. In this paper as a shear reinforcement for supporting region of plate closed stirrup type and shear band are used, and their test results are compared.

Influence of abutment materials on the implant-abutment joint stability in internal conical connection type implant systems

  • Jo, Jae-Young;Yang, Dong-Seok;Huh, Jung-Bo;Heo, Jae-Chan;Yun, Mi-Jung;Jeong, Chang-Mo
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.491-497
    • /
    • 2014
  • PURPOSE. This study evaluated the influence of abutment materials on the stability of the implant-abutment joint in internal conical connection type implant systems. MATERIALS AND METHODS. Internal conical connection type implants, cement-retained abutments, and tungsten carbide-coated abutment screws were used. The abutments were fabricated with commercially pure grade 3 titanium (group T3), commercially pure grade 4 titanium (group T4), or Ti-6Al-4V (group TA) (n=5, each). In order to assess the amount of settlement after abutment fixation, a 30-Ncm tightening torque was applied, then the change in length before and after tightening the abutment screw was measured, and the preload exerted was recorded. The compressive bending strength was measured under the ISO14801 conditions. In order to determine whether there were significant changes in settlement, preload, and compressive bending strength before and after abutment fixation depending on abutment materials, one-way ANOVA and Tukey's HSD post-hoc test was performed. RESULTS. Group TA exhibited the smallest mean change in the combined length of the implant and abutment before and after fixation, and no difference was observed between groups T3 and T4 (P>.05). Group TA exhibited the highest preload and compressive bending strength values, followed by T4, then T3 (P<.001). CONCLUSION. The abutment material can influence the stability of the interface in internal conical connection type implant systems. The strength of the abutment material was inversely correlated with settlement, and positively correlated with compressive bending strength. Preload was inversely proportional to the frictional coefficient of the abutment material.