• 제목/요약/키워드: adsorption of Cr(VI)

검색결과 45건 처리시간 0.025초

Removal of Chromium by Activated Carbon Fibers Plated with Copper Metal

  • Park, Soo-Jin;Jung, Woo-Young
    • Carbon letters
    • /
    • 제2권1호
    • /
    • pp.15-21
    • /
    • 2001
  • In this work, activated carbon fibers (ACFs) were plated with copper metal using electroless plating method and the effects of surface properties and pore structures on chromium adsorption properties were investigated. Surface properties of ACFs have been characterized using pH and acid/base values. BET data with $N_2$ adsorption were used to obtain the structural parameters of ACFs. The electroless copper plating did significantly lead to a decrease in the surface acidity or to an increase in the surface basicity of ACFs. However, all of the samples possessed a well-developed micropore. The adsorption capacity of Cr(III) for the electroless Cu-plated ACFs was higher than that of the as-received, whereas the adsorption capacity of Cr(VI) for the former was lower than that of the latter. The adsorption rate constants ($K_1$, $K_2$, and $K_3$) were also evaluated from chromium adsorption isotherms. It was found that $K_1$ constant for Cr(III) adsorption depended largely on surface basicity. The increase of Cr(III) adsorption and the decrease of Cr(VI) adsorption were attributed to the formation of metal oxides on ACFs, resulting in increasing the surface basicity.

  • PDF

Heavy Metal Adsorption of Anodically Treated Activated Carbon Fibers in Aqueous Solution

  • Park, Soo-Jin;Kim, Young-Mi
    • Carbon letters
    • /
    • 제4권1호
    • /
    • pp.21-23
    • /
    • 2003
  • In this work, the effect of anodic oxidation treatment on Cr(VI) ion adsorption behaviors of activated carbon fibers (ACFs) was investigated. The aqueous solutions of 10 wt% $H_3PO_4$ and $NH_4OH$ were used for acidic and basic electrolytes, respectively. Surface characteristics and textural properties of ACFs were determined by XPS and $N_2$ adsorption at 77 K. The heavy metal adsorption of ACFs was conducted by ICP. As a result, the adsorption amount of the anodized ACFs was improved in order of B-ACFs > A-ACFs > pristine-ACFs. In case of the anodized treated ACFs, the specific surface area was decreased due to the pore blocking or pore destroying by acidic electrolyte. However, the anodic oxidation led to an increase of the Cr(VI) adsorption, which can be attributed to an increase of oxygen-containing functional groups, such as, carboxylic, lactonic, and phenolic groups. It was clearly found that the Cr(VI) adsorption was largely influenced by the surface functional groups, in spite of the reduced specific surface area of the ACFs.

  • PDF

입상활성탄을 이용한 인공 조제 지하수내의 Cr(VI) 제거와 그 활성탄의 재생 (Cr(VI) Removal from Artificial Groundwater by Granular Activated Carbon and Regeneration of the Spent Carbon)

  • Ihnsup Han
    • 한국토양환경학회지
    • /
    • 제4권2호
    • /
    • pp.11-31
    • /
    • 1999
  • 회분식 및 연속류 주상 실험을 통해 인공 조제 지하수로부터 입상활성탄에 의한 6가크롬 (Cr(VI)) 제거에 대한 연구를 수행하였다. 실험에 적용된 변수로는 용액의 pH, 용존산소의 존재여부를 사용하였고 2가철(Fe(II))로 활성탄을 전처리한 것을 처리하지 않은 활성탄과 그 결과를 비교하였다. 용액의 pH를 4.0에서 7.5로 증가 시킴에 따라 무처리 및 Fe(II)로 전처리한 활성탄 모두에 흡착된 Cr(VI)의 양이 현저히 감소하였다. 용존산소가 배제 (무산소조건) 되었을 경우 Cr(VI) 제기량이 증가하였는데, 이는 Cr(VI)의 Cr(III)로의 환원 때문으로 추측된다. 그러나, Fe(II)에 의한 활성탄의 전처기는 Cr(Vl)제거에 거의 영향을 미치지 않았다 흡착된 Cr(VI)를 추출하기위해 0.01M $K_2$$HPO_4$와 침전 또는 흡착된 Cr(III)를 제거하기위해 0.02N $K_2$$HPO_4$로 세척하였는데, 이는 Cr(VI)로 흡착능이 고갈된 활성탄 재생의 한 방법으로 고려될 수 있으리라 사료된다. 재생된 활성탄은 본래의 활성탄보다 큰 흡착능을 보였는데, 그 이유는 Cr(VI)가 낮은 pH에서 흡착이 잘되며 또 Cr(III)로 환원되기 때문으로 사료된다. 산세척수중의 Cr(III)의 존재는 비교적 산성 조건하에서 Cr(VI)의 Cr(III)로의 환원을 보여주는 증거로 사료된다. 5회의 재생 및 재사용 실험에서 이 재생방법이 흡착능을 악화시키는 것 없이 지속적으로 사용될 수 있음을 알 수 있었다.

  • PDF

Valorization of swine manure into low cost activated carbons capable of Cr(VI) removal

  • Gonsalvesh, Lenia;Gryglewicz, Grazyna;Carleer, Robert;Yperman, Jan
    • Advances in environmental research
    • /
    • 제6권2호
    • /
    • pp.95-111
    • /
    • 2017
  • The valorization of swine manure samples, i.e., de-watered cake (SMc) and solid digestate (SMd), in products with beneficial value, i.e., low cost activated carbons (ACs), is studied. For this purpose slow pyrolysis and steam activation at three different duration times are applied. Additionally, the obtained ACs are characterized and tested towards removal of Cr(VI) from aqueous solutions. It is revealed that BET surface area varies in the range of $236-267m^2/g$ for ACs prepared from SMc sample and in the range of $411-432m^2/g$ for ACs prepared from SMd sample. Despite the low determined surface area of prepared ACs, a high total Cr removal capacity is observed occurring through a "coupled adsorption-reduction" mechanism. Higher Cr(VI) removal capacity is demonstrated for ACs having higher surface area ($q_m$ is 140.9 mg/g according Langmuir modelling). Cr(VI) removal is found to be pH dependent with a maximum at pH 1. However at that pH significant amounts of Cr remain in the solution as Cr(III). At pH 2 lower amount of Cr(VI) is removed compensated by a higher removal of Cr(III) resulting in a higher amount of adsorbed $Cr_{tot}$. Therefore adsorption at pH 2 is found to be appropriate. The removal capacity of the studied ACs towards Cr(VI) is almost independent of activation time.

Sorption of Chromium Ions from Aqueous Solution onto Chemically Activated Carbons Developed from Maize Cobs

  • Youssef, A.M.;El-Nabarawy, Th.;Shouman, Mona A.;Khedr, S.A.
    • Carbon letters
    • /
    • 제9권4호
    • /
    • pp.275-282
    • /
    • 2008
  • Chemically activated carbons were prepared from maize cobs, using phosphoric acid of variable concentration. The textural parameters of the activated carbons were determined from the nitrogen adsorption isotherms measured at 77 K. The chemistry of the carbon surface was determined by measuring the surface pH, the pHPZC and the concentration of the carbon - oxygen groups of the acid type on the carbon surface. Kinetics of Cr(VI) sorption/reduction was investigated at 303 K. Two processes were investigated in terms of kinetics and equilibrium namely; Cr(VI) removal and chromium sorption were studied at various initial pH (1-7). Removal of Cr(VI) shows a maximum at pH 2.5. At pH<2.5, sorption decreases because of the proton competition with evolved Cr(III) for ion exchange sites. The decrease of sorption at pH>2.5 is due to proton insufficiency and to the decrease of the extent of Cr(VI) reduction. The chemistry of the surface of activated carbon is an important factor in determining its adsorption capacity from aqueous solutions particularly when the sorption process involves ion exchange.

반응형 음이온화제 처리 면직물에 대한 중금속 이온의 흡착특성 (The Adsorption Properties of Heavy Metal Ions on to Cotton Fabrics Treated with Reactive Anionic Agent)

  • 김미경;윤석한;김태경;임용진
    • 한국염색가공학회지
    • /
    • 제17권1호
    • /
    • pp.20-29
    • /
    • 2005
  • Cotton fabric was treated with a reactive anionic agent in order to have anionic sites(-S03-) on it, which made it possible for the fabric to adsorb various cationic materials. In this study, the adsorptivity of various heavy metal ions such as Pb(II), Cd(II), Cr(III), Co(II), Cu(II), Ni (II) and Cr(VI) on the cotton fabrics treated with anionic agent was examined at the various conditions; concentrations of heavy metal ions, pHs of solution, reaction time and temperature. As a result, the adsorptivity of the heavy metal ions on the cotton fabrics treated with the anionic agent was highly increased comparing to that of untreated cotton fabrics. The order of the adsorptivity was as follows: $Pb(II)>Cd(II)>Cu(II)\geqNi(II)\geqCo(II)>Cr(III)\ggCr(VI)$. The adsorption amounts of most heavy metal ions were increased in weak alkaline conditions and were reached to an adsorption equilibrium within 10 ~ 30 minutes. The maximum adsorption ratios of Pb(II) and Cd(II) were respectively 99% and 80% of the initial concentration of heavy metal ions. Therefore the anionized cotton fabrics seem to be utilized as an adsorption fabrics for the removal of heavy metal ions in the waste water.

Adsorption isotherm and kinetics analysis of hexavalent chromium and mercury on mustard oil cake

  • Reddy, T. Vishnuvardhan;Chauhan, Sachin;Chakraborty, Saswati
    • Environmental Engineering Research
    • /
    • 제22권1호
    • /
    • pp.95-107
    • /
    • 2017
  • Adsorption equilibrium and kinetic behavior of two toxic heavy metals hexavalent chromium [Cr(VI)] and mercury [Hg(II)] on mustard oil cake (MOC) was studied. Isotherm of total chromium was of concave type (S1 type) suggesting cooperative adsorption. Total chromium adsorption followed BET isotherm model. Isotherm of Hg(II) was of L3 type with monolayer followed by multilayer formation due to blockage of pores of MOC at lower concentration of Hg(II). Combined BET-Langmuir and BET-Freundlich models were appropriate to predict Hg(II) adsorption data on MOC. Boyd's model confirmed that external mass transfer was rate limiting step for both total chromium and Hg(II) adsorptions with average diffusivity of $1.09{\times}10^{-16}$ and $0.97m^2/sec$, respectively. Desorption was more than 60% with Hg(II), but poor with chromium. The optimum pH for adsorptions of total chromium and Hg(II) were 2-3 and 5, respectively. At strong acidic pH, Cr(VI) was adsorbed by ion exchange mechanism and after adsorption reduced to Cr(III) and remained on MOC surface. Hg(II) removal was achieved by complexation of $HgCl_2$ with deprotonated amine ($-NH_2$) and carboxyl (COO-) groups of MOC.

Removal characteristics of chromium by activated carbon/CoFe2O4 magnetic composite and Phoenix dactylifera stone carbon

  • Foroutan, Rauf;Mohammadi, Reza;Ramavandi, Bahman;Bastanian, Maryam
    • Korean Journal of Chemical Engineering
    • /
    • 제35권11호
    • /
    • pp.2207-2219
    • /
    • 2018
  • Activated carbon (AC) was synthesized from Phoenix dactylifera stones and then modified by $CoFe_2O_4$ magnetic nanocomposite for use as a Cr(VI) adsorbent. Both $AC/CoFe_2O_4$ composite and AC were fully characterized by FTIR, SEM, XRD, TEM, TGA, and VSM techniques. Based on the surface analyses, the addition of $CoFe_2O_4$ nanoparticles had a significant effect on the thermal stability and crystalline structure of AC. Factors affecting chromium removal efficiency like pH, dosage, contact time, temperature, and initial Cr(VI) concentration were investigated. The best pH was found 2 and 3 for Cr adsorption by AC and $AC/CoFe_2O_4$ composite, respectively. The presence of ion sulfate had a greater effect on the chromium sorption efficiency than nitrate and chlorine ions. The results illustrated that both adsorbents can be used up to seven times to adsorb chromium. The adsorption process was examined by three isothermal models, and Freundlich was chosen as the best one. The experimental data were well fitted by pseudo-second-order kinetic model. The half-life ($t_{1/2}$) of hexavalent chromium using AC and $AC/CoFe_2O_4$ magnetic composite was obtained as 5.18 min and 1.52 min, respectively. Cr(VI) adsorption by AC and $AC/CoFe_2O_4$ magnetic composite was spontaneous and exothermic. In general, our study showed that the composition of $CoFe_2O_4$ magnetic nanoparticles with AC can increase the adsorption capacity of AC from 36 mg/L to 70 mg/L.

Analysis of Heavy Metal Toxic Ions by Adsorption onto Amino-functionalized Ordered Mesoporous Silica

  • Showkat, Ali Md;Zhang, Yu-Ping;Kim, Min-Seok;Gopalan, Anantha Iyengar;Reddy, Kakarla Raghava;Lee, Kwang-Pill
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권11호
    • /
    • pp.1985-1992
    • /
    • 2007
  • Ordered mesoporous silica (MCM-41) materials with different textural properties were prepared using alkyl (dodecyl, cetyl, eicosane) trimethyl ammonium bromide (DTAB, CTAB, ETAB, respectively) as structure directing surfactants, functionalized with amine groups and used as adsorbent for the toxic metal ions, Cr (VI), As (V), Pb (II) and Hg (II). Amino functionalization of mesoporous MCM-41 was achieved by cocondensation of N-[3-(trimethoxysilyl)-propyl] aniline with tetraethyl orthosilicate. Adsorption isotherm and adsorption capacity of the amine functionalized materials for Cr (VI), As (V), Pb (II) and Hg (II) ions were followed by inductively coupled plasma mass spectrometry (ICP-MS). Results demonstrate that amine functionalized MCM-41 prepared with ETAB showed higher adsorption capacity for Cr (VI), As (V), Pb (II) and Hg (II) ions in comparison to MCM-41 prepared with CTAB and DTAB. The higher adsorption capacity for MCM-41(ETAB) was correlated with amine content in the material (determined by CHN analysis) and relative decrease in pore volume and pore diameter. X-ray diffraction (XRD) analysis, nitrogen adsorptiondesorption measurements and Fourier Transform infrared spectrometry (FTIR) were used to follow the changes in the textural parameters and surface properties of the mesoporous materials as a result of amine functionalization to correlate with the adsorption characteristics. The adsorption process was found to depend on the pH of the medium.

박테리아 세포외 중합체(EPS)에 의한 비소, 크롬, 우라늄의 흡착 및 산화상태 변화 (Adsorption and Redox State Alteration of Arsenic, Chromium and Uranium by Bacterial Extracellular Polymeric Substances (EPS))

  • 박현성;고명수;이종운
    • 자원환경지질
    • /
    • 제43권3호
    • /
    • pp.223-233
    • /
    • 2010
  • 세포외 중합체(EPS)의 존재 유무에 따라 Pseudomonas aeruginosa가 용존 비소, 크롬, 우라늄의 흡착 및 산화상태의 변화에 미치는 영향을 회분식 실험을 통해 조사하였다. 배양한 미생물의 표면을 세척한 것과 세척하지 않은 것으로 구분하여 무영양 상태에서 1.1 mg/L의 As(V)와 Cr(VI), 0.5 mg/L의 U(VI)와 반응시키며 시간에 따라 각각의 총 용존 함량과 산화상태 변화를 측정하였다. As(V)의 경우 EPS 존재 여부와 관계없이 흡착은 발생하지 않았으나 EPS가 보존된 박테리아는 As(V)의 약 60%를 As(III)로 환원하였다. 표면을 세척하지 않은 박테리아는 총 용존 크롬의 45%를 제거하였으며 잔류된 용존 크롬의 64%를 Cr(III)로 환원하였다. 우라늄의 경우, 박테리아 표면을 세척하지 않았을 때 U(VI)의 약 80% 이상이 용액으로부터 제거되었다. 이러한 원소 환원은 박테리아가 분비한 EPS 자체의 환원 능력 또는 EPS로부터 보호받아 생육성이 보존된 박테리아의 해독성 환원에 의한 것으로 여겨진다. 이 연구 결과는 자연 환경에서 대부분 바이오필름 상태로 존재하는 미생물이 비소, 크롬, 우라늄의 산화상태 및 이동도 조절에 지대한 영향을 미칠 수도 있음을 의미한다.