Browse > Article
http://dx.doi.org/10.12989/aer.2017.6.2.095

Valorization of swine manure into low cost activated carbons capable of Cr(VI) removal  

Gonsalvesh, Lenia (Institute of Organic Chemistry, Bulgarian Academy of Sciences)
Gryglewicz, Grazyna (Department of Polymer and Carbonaceous Materials, Faculty of Chemistry, Wroclaw University of Technology)
Carleer, Robert (Research group of Applied and Analytical Chemistry, Hasselt University)
Yperman, Jan (Research group of Applied and Analytical Chemistry, Hasselt University)
Publication Information
Advances in environmental research / v.6, no.2, 2017 , pp. 95-111 More about this Journal
Abstract
The valorization of swine manure samples, i.e., de-watered cake (SMc) and solid digestate (SMd), in products with beneficial value, i.e., low cost activated carbons (ACs), is studied. For this purpose slow pyrolysis and steam activation at three different duration times are applied. Additionally, the obtained ACs are characterized and tested towards removal of Cr(VI) from aqueous solutions. It is revealed that BET surface area varies in the range of $236-267m^2/g$ for ACs prepared from SMc sample and in the range of $411-432m^2/g$ for ACs prepared from SMd sample. Despite the low determined surface area of prepared ACs, a high total Cr removal capacity is observed occurring through a "coupled adsorption-reduction" mechanism. Higher Cr(VI) removal capacity is demonstrated for ACs having higher surface area ($q_m$ is 140.9 mg/g according Langmuir modelling). Cr(VI) removal is found to be pH dependent with a maximum at pH 1. However at that pH significant amounts of Cr remain in the solution as Cr(III). At pH 2 lower amount of Cr(VI) is removed compensated by a higher removal of Cr(III) resulting in a higher amount of adsorbed $Cr_{tot}$. Therefore adsorption at pH 2 is found to be appropriate. The removal capacity of the studied ACs towards Cr(VI) is almost independent of activation time.
Keywords
manure; activated carbon; chromium; adsorption;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Azuara, M., Kersten, S.R.A. and Kootstra, A.M.J. (2013), "Recycling phosphorus by fast pyrolysis of pig manure: Concentration and extraction of phosphorus combined with formation of value-added pyrolysis products", Biom. Bioenergy, 49, 171-180.   DOI
2 Bandosz, T.J. (2006), Activated Carbon Surfaces in Environmental Remediation, Elsevier.
3 Di Natale, F., Lancia, A., Molino, A. and Musmarra, D. (2007), "Removal of chromium ions form aqueous solutions by adsorption on activated carbon and char", J. Hazard. Mater., 145(3), 381-390.   DOI
4 Duranoglu, D., Trochimczuk, A.W. and Beker, U. (2012), "Kinetics and thermodynamics of hexavalent chromium adsorption onto activated carbon derived from acrylonitrile-divinylbenzene copolymer", Chem. Eng. J., 187, 193-202.   DOI
5 Uchimiya, M., Bannon, D.I., Wartelle, L.H., Lima, I.M. and Klasson, K.T. (2012), "Lead retention by broiler litter biochars in small arms range soil: Impact of pyrolysis temperature", J. Agricult. Food Chem., 60(20), 5035-5044.   DOI
6 Lima, I.M. and Marshall, W.E. (2005), "Granular activated carbons from broiler manure: Physical, chemical and adsorptive properties", Biores. Technol., 96(6), 699-706.   DOI
7 Smets, K., Adriaensens, P., Reggers, G., Schreurs, S., Carleer, R. and Yperman, J. (2011), "Flash pyrolysis of rapeseed cake: Influence of temperature on the yield and the characteristics of the pyrolysis liquid", J. Analyt. Appl. Pyrolys., 90(2), 118-125.   DOI
8 Stals, M., Carleer, R., Reggers, G., Schreurs, S. and Yperman, J. (2010), "Flash pyrolysis of heavy metal contaminated hardwoods from phytoremediation: Characterisation of biomass, pyrolysis oil and char/ash fraction", J. Analyt. Appl. Pyrolys., 89(1), 22-29.   DOI
9 Stoeckli, F., Daguerre, E. and Guillot, A. (1999), "The development of micropore volumes and widths during physical activation of various precursors", Carbon, 37, 2075-2077.   DOI
10 Tsai, W.T., Liu, S.C., Chen, H.R., Chang, Y.M. and Tsai, Y.L. (2012), "Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment", Chemosph., 89(2), 198-203.   DOI
11 Valix, M., Cheung, W.H. and Zhang, K. (2006), "Role of heteroatoms in activated carbon for removal of hexavalent chromium from wastewaters", J. Hazard. Mater., 135(1-3), 395-405.   DOI
12 Xiu, S., Shahbazi, A., Shirley, V. and Cheng, D. (2010), "Hydrothermal pyrolysis of swine manure to biooil: Effects of operating parameters on products yield and characterization of bio-oil", J. Analyt. Appl. Pyrolys., 88(1), 73-79.   DOI
13 Cantrell, K.B., Hunt, P.G., Uchimiya, M., Novak, J.M. and Ro, K.S. (2012), "Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar", Biores. Technol., 107, 419-428.   DOI
14 Barkat, M., Nibou, D., Chegrouche, S. and Mellah, A. (2009), "Kinetics and thermodynamics studies of chromium(VI) ions adsorption onto activated carbon from aqueous solutions", Chem. Eng. Proc.: Proc. Intensific., 48(1), 38-47.   DOI
15 Boehm, H.P. (1994), "Some aspects of the surface chemistry of carbon blacks and other carbons", Carbon, 32(5), 759-769.   DOI
16 Brunauer, S., Emmett, P.H. and Teller, E. (1938), "Adsorption of gases in multimolecular layers", J. Am. Chem. Soc., 60, 309-319.   DOI
17 Channiwala, S.A. and Parikh, P.P. (2002), "A unified correlation for estimating HHV of solid, liquid and gaseous fuels", Fuel, 81(8), 1051-1063.   DOI
18 Demiral, H., Demiral, I., Tumsek, F. and Karabacakoglu, B. (2008), "Adsorption of chromium(VI) from aqueous solution by activated carbon derived from olive bagasse and applicability of different adsorption models", Chem. Eng. J., 144(2), 188-196.   DOI
19 Foo, K.Y. and Hameed, B.H. (2010), "Insights into the modeling of adsorption isotherm systems", Chem. Eng. J., 156(1), 2-10.   DOI
20 European Environment Agency (2009), Part B: Sectoral Guidance Chapters, 4b. Manure management, EMEP/EE Air Pollutant Emission Inventory Guidebook.
21 Gonsalvesh, L., Marinov, S.P., Gryglewicz, G., Carleer, R. and Yperman, J. (2016a), "Preparation, characterization and application of polystyrene based activated carbons for Ni(II) removal from aqueous solution", Fuel Proc. Technol., 149, 75-85.   DOI
22 Gonsalvesh, L., Yperman, J., Carleer, R., Mench, M., Herzig, R. and Vangronsveld, J. (2016b), "Valorisation of heavy metals enriched tobacco biomass through slow pyrolysis and steam activation", J. Chem. Technol. Biotechnol., 91(6), 1585-1595.   DOI
23 Ho, Y.S. (2006), "Isotherms for the sorption of lead onto peat: Comparison of linear and non-linear methods", Pol. J. Environ. Stud., 15(1), 81-86.
24 Hu, Z., Lei, L., Li, Y. and Ni, Y. (2003), "Chromium adsorption on high-performance activated carbons from aqueous solution", Separat. Purificat. Technol., 31(1), 13-18.   DOI
25 Khezami, L. and Capart, R. (2005), "Removal of chromium(VI) from aqueous solution by activated carbons: Kinetic and equilibrium studies", J. Hazard. Mater., 123(1-3), 223-231.   DOI
26 Kinniburgh (1986), "General purpose adsorption isotherms", Environ. Sci. Technol., 20, 895-904.   DOI
27 Miretzky, P. and Cirelli, A.F. (2010), "Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: A review", J. Hazard. Mater., 180(1-3), 1-19.   DOI
28 Liu, S.X., Chen, X., Chen, X.Y., Liu, Z.F. and Wang, H.L. (2007), "Activated carbon with excellent chromium(VI) adsorption performance prepared by acid-base surface modification", J. Hazard. Mater., 141(1), 315-319.   DOI
29 McKendry, P. (2002a), "Energy production from biomass (part 1): Overview of biomass", Biores. Technol., 83(1), 37-46.   DOI
30 McKendry, P. (2002b), "Energy production from biomass (part 2): Conversion technologies", Biores. Technol., 83(1), 47-54.   DOI
31 Mohan, D. and Pittman Jr, C.U. (2006), "Activated carbons and low cost adsorbents for remediation of triand hexavalent chromium from water", J. Hazard. Mater., 137(2), 762-811.   DOI
32 Park, D., Lim, S.R., Yun, Y.S. and Park, J.M. (2008), "Development of a new Cr(VI)-biosorbent from agricultural biowaste", Biores. Technol., 99(18), 8810-8818.   DOI
33 Parlayici-Karatas, S. and Pehlivan, E. (2012), "Removal of hexavalent chromium using modified pistachio shell", Adv. Environ. Res., 1(2), 167-179.   DOI
34 Ro, K.S., Cantrell, K.B. and Hunt, P.G. (2010), "High-temperature pyrolysis of blended animal manures for producing renewable energy and value-added biochar", Ind. Eng. Chem. Res., 49, 10125-10131.   DOI
35 Schnitzer, M.I., Monreal, C.M. and Jandl, G. (2008), "The conversion of chicken manure to bio-oil by fast pyrolysis. III. Analyses of chicken manure, bio-oils and char by Py-FIMS and Py-FDMS", J. Environ. Sci. Health B, 43(1), 81-95.   DOI