• Title/Summary/Keyword: admissible spaces

Search Result 41, Processing Time 0.025 seconds

FIXED POINTS OF BETTER ADMISSIBLE MAPS ON GENERALIZED CONVEX SPACES

  • Park, Se-Hie
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.6
    • /
    • pp.885-899
    • /
    • 2000
  • We obtain generalized versions of the Fan-Browder fixed point theorem for G-convex spaces. We define the class B of better admissible multimaps on G-convex spaces and show that any closed compact map in b fro ma locally G-convex uniform space into itself has a fixed point.

  • PDF

LEFSCHETZ FIXED POINT THEORY FOR COMPACT ABSORBING CONTRACTIVE ADMISSIBLE MAPS

  • Cho, Yeol-Je;Q'Regan, Donal;Yan, Baoqiang
    • The Pure and Applied Mathematics
    • /
    • v.16 no.1
    • /
    • pp.69-83
    • /
    • 2009
  • New Lefschetz fixed point theorems for compact absorbing contractive admissible maps between Frechet spaces are presented. Also we present new results for condensing maps with a compact attractor. The proof relies on fixed point theory in Banach spaces and viewing a Frechet space as the projective limit of a sequence of Banach spaces.

  • PDF

FIXED POINT THEOREMS FOR MӦNCH TYPE MAPS IN ABSTRACT CONVEX UNIFORM SPACES

  • Kim, Hoonjoo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.345-353
    • /
    • 2021
  • In this paper, first, we present new fixed point theorems for Mönch type multimaps on abstract convex uniform spaces and, also, a fixed point theorem for Mönch type multimaps in Hausdorff KKM L𝚪-spaces. Second, we show that Mönch type multimaps in the better admissible class defined on an L𝚪-space have fixed point properties whenever their ranges are Klee approximable. Finally, we obtain fixed point theorems on 𝔎ℭ-maps whose ranges are 𝚽-sets.

FATOU THEOREM AND EMBEDDING THEOREMS FOR THE MEAN LIPSCHITZ FUNCTIONS ON THE UNIT BALL

  • Cho, Hong-Rae;Lee, Jin-Kee
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.187-195
    • /
    • 2009
  • We investigate the boundary values of the holomorphic mean Lipschitz function. In fact, we prove that the admissible limit exists at every boundary point of the unit ball for the holomorphic mean Lipschitz functions under some assumptions on the Lipschitz order. Moreover, we get embedding theorems of holomorphic mean Lipschitz spaces into Hardy spaces or into the Bloch space on the unit ball in $\mathbb{C}_n$.

Existence of Solutions of Integral and Fractional Differential Equations Using α-type Rational F-contractions in Metric-like Spaces

  • Nashine, Hemant Kumar;Kadelburg, Zoran;Agarwal, Ravi P.
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.4
    • /
    • pp.651-675
    • /
    • 2018
  • We present ${\alpha}$-type rational F-contractions in metric-like spaces, and respective fixed and common fixed point results for weakly ${\alpha}$-admissible mappings. Useful examples illustrate the effectiveness of the presented results. As applications, we obtain sufficient conditions for the existence of solutions of a certain type of integral equations followed by examples of nonlinear fractional differential equations that are verified numerically.

ω-INTERPOLATIVE CONTRACTIONS IN BIPOLAR METRIC SPACES

  • Jong Kyu Kim;Manoj Kumar;Pankaj
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.2
    • /
    • pp.383-394
    • /
    • 2023
  • In this paper, we shall introduce the new notions of ω-orbital admissible mappings, ω-interpolative Kannan type contraction and ω-interpolative Ciric-Reich-Rus type contraction. In the setting of these new contractions, we will prove some fixed point theorems in bipolar metric spaces. Some existing results from literature are also deduced from our main results. Some examples are also provided to illustrate the theorems.

A UNIFIED FIXED POINT THEORY OF MULTIMAPS ON TOPOLOGICAL VECTOR SPACES

  • Park, Seh-Ie
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.803-829
    • /
    • 1998
  • We give general fixed point theorems for compact multimaps in the "better" admissible class $B^{K}$ defined on admissible convex subsets (in the sense of Klee) of a topological vector space not necessarily locally convex. Those theorems are used to obtain results for $\Phi$-condensing maps. Our new theorems subsume more than seventy known or possible particular forms, and generalize them in terms of the involving spaces and the multimaps as well. Further topics closely related to our new theorems are discussed and some related problems are given in the last section.n.

  • PDF

ON SET-VALUED MAPS AND HYPERSPACES

  • Kim, Rae-Seon;Lee, Eui-Chul
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.2
    • /
    • pp.635-640
    • /
    • 2001
  • Let X be a T-admissible space and A(x) be the set of all admissible fibers at x∈X. In this paper, we introduce some basic concepts, properties, and known results about set-valued maps, hyperspaces and especially T-admissible spaces. And then, we construct a certain set-valued map(Theorem 2.3) and an arc from {x} to X∈A(x) in use of the set-valued maps(Theorem 2.3 through Theorem 2.7).