• Title/Summary/Keyword: adipocytes differentiation

Search Result 294, Processing Time 0.024 seconds

Endocrine Disrupting Organotin Compounds are Potent Inducers of Imposex in Gastropods and Adipogenesis in Vertebrates

  • Iguchi, Taisen;Katsu, Yoshinao;Horiguchi, Toshihiro;Watanabe, Hajime;Blumberg, Bruce;Ohta, Yasuhiko
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • The persistent and ubiquitous environmental contaminant, tributyltin chloride (TBT), induces not only imposex in gastropods but also the differentiation of adipocytes in vitro and increases adipose mass in vivo in vertebrates. TBT is a nanomolar affinity ligand for retinoid X receptor (RXR) in the rock shell(Thais clavigera) and for both the RXR and the peroxisome proliferator activated receptor $\gamma(PPAR\gamma)$ in the amphibian (Xenopus laevis), mouse, and human. The molecular mechanisms underlying induction of imposex by TBT have not been clarified, though several hypotheses are proposed. TBT promotes adipogenesis in the murine 3T3-L1 cell model and perturbs key regulators of adipogenesis and lipogenic pathways in vivo primarily through activation of RXR and $PPAR\gamma$. Moreover, in utero exposure to TBT leads to strikingly elevated lipid accumulation in adipose depots, liver, and testis of neonate mice and results in increased adipose mass in adults. In X. laevis, ectopic adipocytes form in and around gonadal tissues following organotin, RXR or $PPAR\gamma$ ligand exposure. TBT represents the first example of an environmental endocrine disrupter that promotes adverse effects from gastropods to mammals.

Anti-adipogenic Effect of Mori Follium Extract in 3T3-L1 Cells (상엽(桑葉) 추출물의 Adipogenesis 억제를 통한 항비만 활성 평가)

  • Kwon, O Jun
    • The Korea Journal of Herbology
    • /
    • v.31 no.5
    • /
    • pp.47-53
    • /
    • 2016
  • Objectives : Mori Follium (Morus alba L. leaf) has been cultivated in many Asian countries. Especially, mulberry leaf has been used as an anti-diabetic remedy in oriental medicine. However, anti-obesity effect of mulberry has not been unknown. In this study, our objectives of study is to investigate the anti-adipogenic effect of mulberry water extract (MLE) and to reveal potential molecular anti-obesity mechanism in 3T3-L1 adipocytes differentiation model.Methods : The cytotoxicity of MLE in 3T3-L1 was examined by MTT assay. Anti-adipogenic effect of MLE was evaluated by Oil Red O (ORO) staining. To elucidate the molecular mechanism, inhibitor assay was employed. The mRNA expression levels of adipogenic transcriptional factors such as PPARγ and fatty acid synthase (FAS) were analyzed by reverse transcription-polymer chain reaction (RT-PCR) analysis.Results : The MLE treatment for 24 h did not affect to the 3T3-L1 cells at concentrations of 1, 10, 100, 200, 400, 800 and 1,000 ㎍/㎖. Thus, non-toxic concentration rages of MLE were used during adipogenesis period (day -2 to 7). Intracellular lipid accumulation in MLE-treated 3T3-L1 adipocytes (day 6) were quantitatively evaluated by ORO staining. The MLE treatment significantly and dose-dependently suppressed 3T3-L1 adipogenesis by 60.42%, 38.24%, and 5.97% at 10, 100, and 200 ㎍/㎖, respectively. In addition, our inhibitor assay and RT-PCR analysis revealed that the MLE-inhibited 3T3-L1 adipogenesis through inhibition of PPARγ mediated by Wnt/β-catenin signaling pathway.Conclusions : In conclusion, these findings indicate that the MLE could be used in prevent and/or treatment of obesity-related diseases.

Structural investigation of ginsenoside Rf with PPARγ major transcriptional factor of adipogenesis and its impact on adipocyte

  • Siraj, Fayeza Md;Natarajan, Sathishkumar;Huq, Md Amdadul;Kim, Yeon Ju;Yang, Deok Chun
    • Journal of Ginseng Research
    • /
    • v.39 no.2
    • /
    • pp.141-147
    • /
    • 2015
  • Background: Adipocytes, which are the main cellular component of adipose tissue, are the building blocks of obesity. The nuclear hormone receptor $PPAR{\gamma}$ is a major regulator of adipocyte differentiation and development. Obesity, which is one of the most dangerous yet silent diseases of all time, is fast becoming a critical area of research focus. Methods: In this study, we initially aimed to investigate whether the ginsenoside Rf, a compound that is only present in Panax ginseng Meyer, interacts with $PPAR{\gamma}$ by molecular docking simulations. After we performed the docking simulation the result has been analyzed with several different software programs, including Discovery Studio, Pymol, Chimera, Ligplus, and Pose View. All of the programs identified the same mechanism of interaction between $PPAR{\gamma}$ and Rf, at the same active site. To determine the drug-like and biological activities of Rf, we calculate its absorption, distribution, metabolism, excretion, and toxic (ADMET) and prediction of activity spectra for substances (PASS) properties. Considering the results obtained from the computational investigations, the focus was on the in vitro experiments. Results: Because the docking simulations predicted the formation of structural bonds between Rf and $PPAR{\gamma}$, we also investigated whether any evidence for these bonds could be observed at the cellular level. These experiments revealed that Rf treatment of 3T3-L1 adipocytes downregulated the expression levels of $PPAR{\gamma}$ and perilipin, and also decreased the amount of lipid accumulated at different doses. Conclusion: The ginsenoside Rf appears to be promising compound that could prove useful in antiobesity treatments.

Cytotoxic, Anti-Inflammatory and Adipogenic Effects of Inophyllum D, Calanone, Isocordato-oblongic acid, and Morelloflavone on Cell Lines

  • Taher, Muhammad;Aminuddin, Amnani;Susanti, Deny;Aminudin, Nurul Iman;On, Shamsul;Ahmad, Farediah;Hamidon, Hanisuhana
    • Natural Product Sciences
    • /
    • v.22 no.2
    • /
    • pp.122-128
    • /
    • 2016
  • This paper reports in vitro cytotoxic, anti-inflammatory and adipocyte diffentiation with adipogenic effects of coumarins inophyllum D (1) and calanone (2), and a chromanone carboxylic acid namely isocordato-oblongic acid (3) isolated from Calophyllum symingtonianum as well as a biflavonoid morelloflavone (4) isolated from Garcinia prainiana on MCF-7 breast adenocarcinoma RAW 264.7 macrophages and 3T3-L1 preadipocytes cells, respectively. The cytotoxicity study on MCF-7 cell was conducted by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Meanwhile, the study of anti-inflammatory effects in RAW 264.7 macrophages and adipogenic effects on 3T3-L1 pre-adipocytes were conducted through nitrite determination assay and induction of adipocyte differentiation, respectively. In the cytotoxicity study, inophyllum D (1) was the only compounds that exhibited significant cytotoxic effect against MCF-7 cell with $IC_{50}$ of $84{\mu}g/mL$. Further, all by inhibiting the compounds have shown anti-inflammatory effects in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages of nitrite concentration with production. In addition, the compounds also exhibited adipogenic effects on 3T3-L1 pre-adipocytes by stimulating lipid formation. Thus, this study may provide significant input in discovery of the potential effects cytotoxic, anti-inflammatory and adipogenic agents.

Anti-obesity Activity of Extract from Saussurea lappa (목향 추출물의 항비만 활성 효과)

  • Yoon, Tae-Sook;Sung, Yoon-Young;Jang, Ja-Young;Yang, Won-Kyung;Ji, Yun-Ui;Kim, Ho-Kyoung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.3
    • /
    • pp.151-156
    • /
    • 2010
  • Obesity has become one of the main public health problems. Saussurea lappa (Asteraceae), syn Aucklandia lappa and Saussurea costus, is a well-known herbal medicine that has been used for treating various ailments, such as inflammatory and gastrointestinal diseases. The present study examined the anti-obesity effect of S. lappa extract (SLE) in 3T3-L1 adipocytes and high fat diet (HFD)-induced obese mouse model. SLE significantly inhibited the differentiation from preadipocytes to adipocytes of cultured 3T3-L1 in dose-dependent manner. In addition, SLE significantly decreased the body weight gain and the food efficiency ratio of mice fed HFD during 9 weeks. Further study must be performed for the pharmacological mechanism and safety of SLE as well as the identification of active compound in SLE. Our results revealed that S. lappa suppresses the adipogenesis in cultured cells and the obesity in rodent models. Therefore, S. lappa may be useful toward the development of new potent anti-obesity drugs.

Sulfuretin Prevents Obesity and Metabolic Diseases in Diet Induced Obese Mice

  • Kim, Suji;Song, No-Joon;Chang, Seo-Hyuk;Bahn, Gahee;Choi, Yuri;Rhee, Dong- Kwon;Yun, Ui Jeong;Choi, Jinhee;Lee, Jeon;Yoo, Jae Hyuk;Shin, Donghan;Park, Ki-Moon;Kang, Hee;Lee, Sukchan;Ku, Jin-Mo;Cho, Yoon Shin;Park, Kye Won
    • Biomolecules & Therapeutics
    • /
    • v.27 no.1
    • /
    • pp.107-116
    • /
    • 2019
  • The global obesity epidemic and associated metabolic diseases require alternative biological targets for new therapeutic strategies. In this study, we show that a phytochemical sulfuretin suppressed adipocyte differentiation of preadipocytes and administration of sulfuretin to high fat diet-fed obese mice prevented obesity and increased insulin sensitivity. These effects were associated with a suppressed expression of inflammatory markers, induced expression of adiponectin, and increased levels of phosphorylated ERK and AKT. To elucidate the molecular mechanism of sulfuretin in adipocytes, we performed microarray analysis and identified activating transcription factor 3 (Atf3) as a sulfuretin-responsive gene. Sulfuretin elevated Atf3 mRNA and protein levels in white adipose tissue and adipocytes. Consistently, deficiency of Atf3 promoted lipid accumulation and the expression of adipocyte markers. Sulfuretin's but not resveratrol's anti-adipogenic effects were diminished in Atf3 deficient cells, indicating that Atf3 is an essential factor in the effects of sulfuretin. These results highlight the usefulness of sulfuretin as a new anti-obesity intervention for the prevention of obesity and its associated metabolic diseases.

Myonectin inhibits adipogenesis in 3T3-L1 preadipocytes by regulating p38 MAPK pathway

  • Park, Tae-Jun;Park, Anna;Kim, Jaehoon;Kim, Jeong-Yoon;Han, Baek Soo;Oh, Kyoung-Jin;Lee, Eun Woo;Lee, Sang Chul;Bae, Kwang-Hee;Kim, Won Kon
    • BMB Reports
    • /
    • v.54 no.2
    • /
    • pp.124-129
    • /
    • 2021
  • In current times, obesity is a major health problem closely associated with metabolic disease such as diabetes, dyslipidemia, and cardiovascular disease. The direct cause of obesity is known as an abnormal increase in fat cell size and the adipocyte pool. Hyperplasia, the increase in number of adipocytes, results from adipogenesis in which preadipocytes differentiate into mature adipocytes. Adipogenesis is regulated by local and systemic cues that alter transduction pathways and subsequent control of adipogenic transcription factors. Therefore, the regulation of adipogenesis is an important target for preventing obesity. Myonectin, a member of the CTRP family, is a type of myokine released by skeletal muscle cells. Although several studies have shown that myonectin is associated with lipid metabolism, the role of myonectin during adipogenesis is not known. Here, we demonstrate the role of myonectin during adipocyte differentiation of 3T3-L1 cells. We found that myonectin inhibits the adipogenesis of 3T3-L1 preadipocytes with a reduction in the expression of adipogenic transcription factors such as C/EBPα, β and PPARγ. Furthermore, we show that myonectin has an inhibitory effect on adipogenesis through the regulation of the p38 MAPK pathway and CHOP. These findings suggest that myonectin may be a novel therapeutic target for the prevention of obesity.

Effects of Ethanol Extracts from Commonly Consumed Vegetables in Korea on Differentiation and Secretion of MCP-1 and Adiponectin in 3T3-L1 Adipocytes and Lipid Accumulation in HepG2 Hepatocytes (한국인 다소비 채소의 에탄올 추출물이 3T3-L1 지방세포와 HepG2 간장세포의 지질축적, MCP-1과 Adiponectin의 분비에 미치는 영향)

  • Ahn, Eun Mi;Kang, Hyun Ju;Kim, Young;Choe, Jeong Sook;Kang, Min-Sook
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.25 no.1
    • /
    • pp.99-110
    • /
    • 2015
  • The purpose of this study was to evaluate the inhibitory effects of commonly consumed vegetables in Korea on lipid accumulation and production of pro-inflammatory cytokines related to obesity/metabolic syndrome. Using KNHANES (Korea National Health and Nutrition Examination Survey) raw data ($1^{st}$; 1998, $5^{th}$; 2010, 2011) and a literature search, we selected vegetables for study. Edible portions of samples were prepared, ethanol-extracted, and then freeze-dried. 3T3-L1 adipocytes and HepG2 hepatocytes cells were used as in vitro models. Lipid accumulation determined by Oil-red O staining showed that all samples except bracken had inhibitory effects on lipid accumulation in 3T3-L1 adipocytes. Especially, crown daisy and mugwort effectively reduced accumulation of lipids, and their inhibition rates were more than 60% of the control group. Young pumpkin, leeks, crown daisy, and mugwort showed significantly decreased MCP-1 levels compared to the control group. However, adiponectin protein level did not increase in the vegetables experimental group. In HepG2 hepatocytes, all samples showed inhibitory effects on lipid accumulation at one of the two concentrations. Although adiponectin protein levels did not increase, MCP-1 protein levels decreased in adipocytes. Further, lipid accumulation in adipocytes and hepatocytes decreased. In conclusion, all samples showed one or more improved obesity/metabolic syndrome indicators. Among them, young pumpkin, leeks, crown daisy, and mugwort were selected as the most effective portions of vegetables based on improvement of obesity/metabolic syndrome-related indicators.

Pro-apoptotic and Anti-adipogenic Effects of Proso Millet (Panicum miliaceum) Grains on 3T3-L1 Preadipocytes (기장(Panicum miliaceum)의 마우스 3T3-L1 세포에 대한 에폽토시스 유발 및 지방세포형성 억제 효능)

  • Jun, Do Youn;Lee, Ji Young;Han, Cho Rong;Kim, Kwan-Pil;Seo, Myung Chul;Nam, Min Hee;Kim, Young Ho
    • Journal of Life Science
    • /
    • v.24 no.5
    • /
    • pp.505-514
    • /
    • 2014
  • To examine the anti-obese activity of miscellaneous cereal grains, 80% ethanol extracts from eight selected miscellaneous cereal grains were compared for their cytotoxic effects on 3T3-L1 murine preadipocytes. The ethanol extract of proso millet exhibited the highest cytotoxicity. Further fractionation of the ethanol extract with methylene chloride, ethyl acetate, and n-butanol showed that the cytotoxicity of the ethanol extract was mainly partitioned into the butanol fraction. As compared with differentiated mature adipocytes, 3T3-L1 preadipocytes were more susceptible to the cyctotoxicity of the butanol fraction. When each organic solvent fraction (25 ${\mu}g/ml$) was added during the differentiation period for 6 days, the cell viability was not affected significantly except for the butanol fraction, but the intracellular lipid accumulation declined to a level of 81.5%~50.3% of the control. The Oil Red O staining data also demonstrated that the ethanol extract as well as the butanol fraction could inhibit the differentiation of 3T3-L1 preadipocytes into mature adipocytes. The presence of the butanol extract during the induced adipocytic differentiation also resulted in a significant reduction in the expression levels of critical adipogenesis mediators $(C/EBP{\alpha}$, $PPAR{\gamma}$, aP2, and LPL) to a barely detectable or undetectable level and the cells retained the fibroblast-like morphology of 3T3-L1. In 3T3-L1 cells, the cytotoxicity of the butanol fraction (50-100 ${\mu}g/ml$) was accompanied by mitochondrial membrane potential (${\Delta}{\psi}m$) loss, caspase-3 activation, and PARP degradation. Taken together, these results indicate that proso millet grains possess pro-apoptotic and anti-adipocytic activities toward adipocytes, which can be applicable to prevention of obesity.

Defatted Grape Seed Extracts Suppress Adipogenesis in 3T3-L1 Preadipocytes (포도씨 탈지박 추출물 처리가 3T3-L1 Preadipocyte 내 지방 생성에 미치는 영향)

  • Cho, Young-Min;Lee, Seon-Mi;Kim, Young-Hwa;Jeon, Geon-Uk;Sung, Jee-Hy;Jeong, Heon-Sang;Lee, Jun-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.6
    • /
    • pp.927-931
    • /
    • 2010
  • The objective of this study was to evaluate the effect of defatted grape seed extract (DGSE) on adipocyte differentiation in 3T3-L1 preadipocytes. DGSE at 100 ${\mu}g$/mL significantly suppressed lipid accumulation and glycerol-3-phosphate dehydrogenase activity in hormonally stimulated adipocytes, an indicator of adipocyte differentiation. In order to understand the anti-adipogenic effects of DGSE, the changes in the expression of several adipogenic transcription factors including peroxisome proliferator-activated receptor (PPAR) $\gamma$, CCAAT/enhancer-binding protein (C/EBP) $\alpha$ and $\beta$ were investigated using immunoblotting. DGSE suppressed the expression of PPAR$\gamma$, C/EBP$\alpha$, and C/EBP$\beta$ proteins compared with control adipocytes in a dose-dependent manner. This results indicated that DGSE may alter fat mass by directly affecting adipogensis in maturing preadipocytes and thus may have applications for the treatment of obesity.