DOI QR코드

DOI QR Code

Cytotoxic, Anti-Inflammatory and Adipogenic Effects of Inophyllum D, Calanone, Isocordato-oblongic acid, and Morelloflavone on Cell Lines

  • Taher, Muhammad (Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia) ;
  • Aminuddin, Amnani (Department of Biomedical Science, Faculty of Science, International Islamic University Malaysia) ;
  • Susanti, Deny (Department of Chemistry, Faculty of Science, International Islamic University Malaysia) ;
  • Aminudin, Nurul Iman (Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia) ;
  • On, Shamsul (Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia) ;
  • Ahmad, Farediah (Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia) ;
  • Hamidon, Hanisuhana (Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia)
  • Received : 2015.11.23
  • Accepted : 2016.01.24
  • Published : 2016.06.30

Abstract

This paper reports in vitro cytotoxic, anti-inflammatory and adipocyte diffentiation with adipogenic effects of coumarins inophyllum D (1) and calanone (2), and a chromanone carboxylic acid namely isocordato-oblongic acid (3) isolated from Calophyllum symingtonianum as well as a biflavonoid morelloflavone (4) isolated from Garcinia prainiana on MCF-7 breast adenocarcinoma RAW 264.7 macrophages and 3T3-L1 preadipocytes cells, respectively. The cytotoxicity study on MCF-7 cell was conducted by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Meanwhile, the study of anti-inflammatory effects in RAW 264.7 macrophages and adipogenic effects on 3T3-L1 pre-adipocytes were conducted through nitrite determination assay and induction of adipocyte differentiation, respectively. In the cytotoxicity study, inophyllum D (1) was the only compounds that exhibited significant cytotoxic effect against MCF-7 cell with $IC_{50}$ of $84{\mu}g/mL$. Further, all by inhibiting the compounds have shown anti-inflammatory effects in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages of nitrite concentration with production. In addition, the compounds also exhibited adipogenic effects on 3T3-L1 pre-adipocytes by stimulating lipid formation. Thus, this study may provide significant input in discovery of the potential effects cytotoxic, anti-inflammatory and adipogenic agents.

Keywords

References

  1. Hanson, J. R. Royal Society of Chemistry 2003, 17.
  2. Croteau, R.; Kutchan, T. M.; Lewis, N.G. Biochem. Mol. Biol. Plants 2000, 24, 1250-1319.
  3. Brahmachari, G. Bioactive Natural Products; John Wiley & Sons: United Kingdom, 2015, pp 1-199.
  4. Aminudin, N. I.; Ahmad, F.; Taher, M.; Zulkifli, R. M. Nat. Prod. Commun. 2015, 10, 1585-1587.
  5. Waterman, P. G.; Crichton, E. G. Phytochemistry 1980, 19, 2723-2726. https://doi.org/10.1016/S0031-9422(00)83950-3
  6. Mosmann, T. J. Immunol. Methods 1983, 65, 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  7. Lee, H. S.; Ryu, D. S.; Lee, G. S.; Lee, D. S. J. Ethnopharmacol. 2012, 140, 271-276. https://doi.org/10.1016/j.jep.2012.01.016
  8. Susanti, D.; Amiroudine, M. Z.; Rezali, M. F.; Taher, M. Nat. Prod. Res. 2013, 27, 417-424. https://doi.org/10.1080/14786419.2012.725399
  9. Itoigawa, M.; Ito, C.; Tan, H. T.; Kuchide, M.; Tokuda, H.; Nishino, H.; Furukawa, H. Cancer Lett. 2001, 169, 15-19. https://doi.org/10.1016/S0304-3835(01)00521-3
  10. Osman, A. M.; Bayoumi, H. M.; Al-Harthi, S. E.; Damanhouri, Z. A.; ElShal, M. F. Cancer Cell Int. 2012, 12, 47-53. https://doi.org/10.1186/1475-2867-12-47
  11. Gao, Y.; Jiang, W.; Dong, C.; Li, C.; Fu, X.; Min, L.; Tian, J.; Jin, H.; Shen, J.; Toxicol. In Vitro 2012, 26 (1), 1-6. https://doi.org/10.1016/j.tiv.2011.09.019
  12. Nahar, P. P.; Driscoll, M. V.; Li, L.; Slitt, A. L.; Seeram, N. P. J. Funct. Foods 2014, 6, 126-136. https://doi.org/10.1016/j.jff.2013.09.026
  13. Kumar, V.; Abbas, A. K.; Fausto, N.; Mitchell, R. Robbins Basic Pathology: 8th Edition; Saunders/Elsevier: Philadelphia, 2007, p 9.
  14. Kim, H. K.; Cheon, B. S.; Kim, Y. H.; Kim, S. Y.; Kim, H. P. Biochem. Pharmacol. 1999, 58, 759-765. https://doi.org/10.1016/S0006-2952(99)00160-4
  15. Macia, L.; Viltart, O.; Verwaerde, C.; Delacre, M.; Delanoye, A.; Grangette, C.; Wolowczuk, I. Genes Nutr. 2006, 1, 189-212. https://doi.org/10.1007/BF02829968
  16. Yun, J. W. Phytochemistry 2010, 71, 1625-1641. https://doi.org/10.1016/j.phytochem.2010.07.011

Cited by

  1. Anti-Inflammatory Phenolic Metabolites from the Edible Fungus Phellinus baumii in LPS-Stimulated RAW264.7 Cells vol.22, pp.10, 2016, https://doi.org/10.3390/molecules22101583
  2. Chemical Characterization of a Renoprotective Metabolite from Termite-Associated Streptomyces sp. RB1 against Cisplatin-Induced Cytotoxicity vol.19, pp.1, 2016, https://doi.org/10.3390/ijms19010174
  3. Chemical Characterization of Novel Natural Products from the Roots of Asian Rice (Oryza sativa) that Control Adipocyte and Osteoblast Differentiation vol.66, pp.11, 2016, https://doi.org/10.1021/acs.jafc.7b05030
  4. 7α,15-Dihydroxydehydroabietic acid from Pinus koraiensis inhibits the promotion of angiogenesis through downregulation of VEGF, p-Akt and p-ERK in HUVECs vol.28, pp.6, 2018, https://doi.org/10.1016/j.bmcl.2018.02.014
  5. Cytotoxic Triterpenoids from the Fruits of Ligustrum japonicum vol.24, pp.2, 2018, https://doi.org/10.20307/nps.2018.24.2.93
  6. Bioactivity evaluations of betulin identified from the bark of Betula platyphylla var. japonica for cancer therapy vol.41, pp.8, 2016, https://doi.org/10.1007/s12272-018-1064-9
  7. Characterization of New Polyphenolic Glycosidic Constituents and Evaluation of Cytotoxicity on a Macrophage Cell Line and Allelopathic Activities of Oryza sativa vol.23, pp.8, 2018, https://doi.org/10.3390/molecules23081933
  8. Tirucallane Triterpenoids from the Stems and Stem Bark of Cornus walteri that Control Adipocyte and Osteoblast Differentiations vol.23, pp.11, 2016, https://doi.org/10.3390/molecules23112732
  9. Potential Anticancer Agents Characterized from Selected Tropical Plants vol.82, pp.3, 2019, https://doi.org/10.1021/acs.jnatprod.9b00018
  10. Cytotoxic Lactones from the Pericarps of Litsea japonica vol.25, pp.1, 2019, https://doi.org/10.20307/nps.2019.25.1.23
  11. Herbal medicine as an auspicious therapeutic approach for the eradication of Helicobacter pylori infection: A concise review vol.234, pp.10, 2016, https://doi.org/10.1002/jcp.28363
  12. Lipid Accumulation Modulation by Garcinia atroviridis Fruit Extract in 3T3-L1 Adipocyte Cells vol.10, pp.4, 2016, https://doi.org/10.1080/22311866.2020.1804448