• Title/Summary/Keyword: adhesion strength

Search Result 1,340, Processing Time 0.028 seconds

Analysis of Output Characteristics of Lead-free Ribbon based PV Module Using Conductive Paste (전도성 페이스트를 이용한 무연 리본계 PV 모듈의 출력 특성 분석)

  • Yoon, Hee-Sang;Song, Hyung-Jun;Go, Seok-Whan;Ju, Young-Chul;Chang, Hyo Sik;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.1
    • /
    • pp.45-55
    • /
    • 2018
  • Environmentally benign lead-free solder coated ribbon (e. g. SnCu, SnZn, SnBi${\cdots}$) has been intensively studied to interconnect cells without lead mixed ribbon (e. g. SnPb) in the crystalline silicon(c-Si) photovoltaic modules. However, high melting point (> $200^{\circ}C$) of non-lead based solder provokes increased thermo-mechanical stress during its soldering process, which causes early degradation of PV module with it. Hence, we proposed low-temperature conductive paste (CP) based tabbing method for lead-free ribbon. Modules, interconnected by the lead-free solder (SnCu) employing CP approach, exhibits similar output without increased resistivity losses at initial condition, in comparison with traditional high temperature soldering method. Moreover, 400 cycles (2,000 hour) of thermal cycle test reveals that the module integrated by CP approach withstands thermo-mechanical stress. Furthermore, this approach guarantees strong mechanical adhesion (peel strength of ~ 2 N) between cell and lead-free ribbons. Therefore, the CP based tabbing process for lead free ribbons enables to interconnect cells in c-Si PV module, without deteriorating its performance.

A Study on Bond Strength of Procelain with Non Precious Alloy (도재전장관용 비귀금속합금과 도재의 융착결합에 관한 연구)

  • Kang, Sung-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.18 no.1
    • /
    • pp.49-57
    • /
    • 1980
  • The adhesive mechanisms on the metal-ceramic restorations have been reported to be mechanical interlocking, chemical bonding, compressive force, and Van der Waal's force, etc. Of these, the mechanical interlocking and chemical bonding forces are thought to affect the adhesive force between Ni-Cr alloy and porcelain. This study investigates the adhesion of Ni-Cr alloy to porcelain according to surface treatment. For this purpose, the following experiments were made; The compositions of Ni-Cr alloy as cast by emission spectrograph, and the oxides produced on Ni-Cr alloy during degassing at $1850^{\circ}F$ for 30 minutes in air and in vacuum were analyzed by X-ray diffractograph. The metal phases of Ni-Cr alloy were observed according to porcelain-baking cyclic heat treatment by photo microscope and the distribution and the shift of elements of Ni-Cr alloy and porcelain and the failure phases between Ni-Cr alloy and porcelain by scanning electron microscope. The adhesive force between Ni-Cr alloy and porcelain was measured according to surface treatment with oxidization and roughening by Instron Universal Testing Machine. Results were as follows; 1. The metal phases of Ni-Cr alloy as cast and degassing state showed the enlarged and fused core, but when subjected to porcelain-baking cyclic heat treatment, showed a dendrite growing. 2. The kinds of metal oxides produced on Ni-Cr alloy during degassing were found to be NiO and $Cr_2O_3$. 3. The distribution of elements at the interface of Ni-Cr alloy and porcelain in degassing state showed demarcation line, but in roughening state, showed mechanical interlocking phase. 4. The shift of elements at the interface occurred in both states, but the shift amount was found to be larger in roughening than in degassing. 5. The adhesive force between Ni-Cr alloy and porcelain was found to be $3.45{\pm}0.93kg/mm^2$, in degassing and $3.82{\pm}0.99kg/mm^2$, in roughening. 6. The failure phase between Ni-Cr alloy and porcelain showed the mixed type failure.

  • PDF

The effect of bacterial cellulose membrane compared with collagen membrane on guided bone regeneration

  • Lee, So-Hyoun;Lim, Youn-Mook;Jeong, Sung In;An, Sung-Jun;Kang, Seong-Soo;Jeong, Chang-Mo;Huh, Jung-Bo
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.6
    • /
    • pp.484-495
    • /
    • 2015
  • PURPOSE. This study was to evaluate the effects of bacterial cellulose (BC) membranes as a barrier membrane on guided bone regeneration (GBR) in comparison with those of the resorbable collagen membranes. MATERIALS AND METHODS. BC membranes were fabricated using biomimetic technology. Surface properties were analyzed, Mechanical properties were measured, in vitro cell proliferation test were performed with NIH3T3 cells and in vivo study were performed with rat calvarial defect and histomorphometric analysis was done. The Mann-Whitney U test and the Wilcoxon signed rank test was used (${\alpha}<.05$). RESULTS. BC membrane showed significantly higher mechanical properties such as wet tensile strength than collagen membrane and represented a three-dimensional multilayered structure cross-linked by nano-fibers with 60 % porosity. In vitro study, cell adhesion and proliferation were observed on BC membrane. However, morphology of the cells was found to be less differentiated, and the cell proliferation rate was lower than those of the cells on collagen membrane. In vivo study, the grafted BC membrane did not induce inflammatory response, and maintained adequate space for bone regeneration. An amount of new bone formation in defect region loaded with BC membrane was significantly similar to that of collagen membrane application. CONCLUSION. BC membrane has potential to be used as a barrier membrane, and efficacy of the membrane on GBR is comparable to that of collagen membrane.

A Study on the Aging Behavior of Ship Organic Coating by the Flow Induced Shear Stress (유동 전단응력에 의한 선박 유기도막의 열화거동 연구)

  • Park Hyun;Park Jin-Hwan;Ha Hyo-Min;Chun H.H.;Lee In-Won
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.1 s.24
    • /
    • pp.9-14
    • /
    • 2006
  • Analysis has been made of the anti-corrosive property of organic coating under the shear stress of the flow by means of AC impedance method. Marine anti-corrosive painted panels were placed in the water channel with varying flow rate, thereby experiencing varying flow shear stress on the surfaces. The velocities of the salt water were ranged from 1.48 to 5.2 m/s and the coating thickness of from $70{\mu}m\;to\;140{\mu}m$. For all coating thicknesses investigated, the poorer anti-corrosive property and the lower adhesion strength have been found for the higher shear stress. It has been found that the shear stress accelerates the aging of organic marine coatings.

  • PDF

Effect of Working Pressure and Substrate Bias on the Tribology Properties of the Cr-Al-N Coatings (Cr-Al-N 코팅의 마찰마모 특성에 미치는 공정압력과 바이어스 전압의 영향)

  • Choi, Seon-A;Kim, Seong-Won;Lee, Sungmin;Kim, Hyung-Tae;Oh, Yoon-Suk
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.473-479
    • /
    • 2017
  • CrN coatings have been used as protective coatings for cutting tools, forming tools, and various tribological machining applications because these coatings have high hardness. Cr-Al-N coatings have been investigated to improve the properties of CrN coatings. Cr-Al-N coatings were fabricated by a hybrid physical vapor deposition method consisting of unbalanced magnetron sputtering and arc ion plating with different working pressure and substrate bias voltage. The phase analysis of the composition was performed using XRD (x-ray diffraction). Cr-Al-N coatings were grown with textured CrN phase and (111), (200), and (220) planes. The adhesion strength of the coatings tested by scratch test increased. The friction coefficient and removal rate of the coatings were measured by a ball-on-disk test. The friction coefficient and removal rate of the coatings decreased from 0.46. to 0.22, and from $2.00{\times}10^{-12}m^2/N$ to $1.31{\times}10^{-13}m^2/N$, respectively, with increasing bias voltage. The tribological properties of the coatings increased with increasing substrate bias voltage.

Etch resist patterning of printed circuit board by ink jet printing technology (잉크젯 인쇄기술을 이용한 인쇄회로기판의 에칭 레지스터 패터닝)

  • Seo, Shang-Hoon;Lee, Ro-Woon;Kim, Yong-Sik;Kim, Tae-Gu;Park, Sung-Jun;Yun, Kwan-Soo;Park, Jae-Chan;Jeong, Kyoung-Jin;Joung, Jae-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.108-108
    • /
    • 2007
  • Inkjet printing is a non-contact and direct writing associated with a computer. In the industrial field, there have been many efforts to utilize the inkjet printing as a new way of manufacturing, especially for electronic devices. The etching resist used in this process is an organic polymer which becomes solidified when exposed to ultraviolet lights and has high viscosity of 300 cPs at ambient temperature. A piezoelectric-driven ink jet printhead is used to dispense $20-40\;{\mu}m$ diameter droplets onto the copper substrate to prevent subsequent etching. In this study, factors affecting the pattern formation such as printing resolution, jetting property, adhesion strength, etching and strip mechanism, UV pinning energy have been investigated. As a result, microscale Etch resist patterning of printed circuit board with tens of ${\mu}m$ high have been fabricated.

  • PDF

Manufacture and Properties of Water Soluble Acrylic Type PSA's - Effect of Functional Monomer Change and Atmospheric Plasma Treatment - (수용성 아크릴계 점착제의 제조와 물성 연구 - 기능성 단량체 변화와 대기압 플라즈마 처리영향 -)

  • Sim, Dong-Hyun;Seul, Soo-Duk
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.45-51
    • /
    • 2009
  • Water soluble adhesive was polymerized from butyl acrylate (BA), methyl methacrylate (MMA) and one of various functional monomers such as acrylic acid (AA), 2-hydroxylethyl methacrylate (2-HEMA), glycidyl methacrylic acid (GMA) and acrylamide (AAm). The amount of the functional monomers was 1$\sim$5 wt%/monomer. In order to improve the adhesive power, a substrate was treated using atmospheric flat plasma method. The adhesive power was improved by the addition of the functional monomers with an order of AA> 2-HEMA> GMA> AAm. The holding power of the adhesives, which is related with the thermal properties of the adhesives, increased with the amount of the functional monomers. The effectiveness in improving the holding power has an order of AA > AAm > GMA > 2-HEMA. By treating a substrate with atmospheric flat plasma method, the adhesives containing each of AA, 2-HEMA, GMA and AAm showed the increases of the final adhesion strength by 9.1, 9.4, 9.4, and 1.8%, respectively. In conclusion, the mechanical properties such as adhesive power and holding power could be controlled by introducing.

Effect of Intermediate Layer Coated Diamond Particles on Performance of Diamond Tool (다이아몬드 입자에 형성된 중간층이 다이아몬드 공구 성능에 미치는 영향)

  • Son, Kyung-Sik;Lee, Jung-Hoon;Choi, Yong-Je;Jung, Uoo-Chang;Chung, Won-Sub
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.5
    • /
    • pp.216-222
    • /
    • 2013
  • In order to improve the performance of electrodeposited diamond-nickel composite, surface modification of diamond particles was carried out using powder immersion reaction assisted coating (PIRAC). Titanium and chromium were selected as coating elements, which are known as carbide former. With respect to the powder elements, various phases were formed on diamond; metallic Ti and TiC for Ti powder, $Cr_3C_2$ for Cr powder, and TiC and $Cr_3C_2$ for Ti-Cr mixed powder. Surface modified diamond particle showed higher specific surface area, especially Ti coating induced considerable increase of specific surface area. The increase of specific surface area suggests increase of surface roughness, and that was confirmed by surface observation using FE-SEM. In addition, wear properties of diamond-nickel composite including surface modified diamonds were improved, and Ti coated diamond showed the highest performance. The wear property of diamond-nickel composite is dependent on adhesion strength between diamond particle and nickel layer. Therefore, surface modification of diamond particle by PIRAC increasing surface roughness is effective to improve the properties of diamond-nickel composite.

Preparation and Properties of EPDM/Zinc Methacrylate Hybrid Composites (에틸렌 프로필렌 디엔 고무/메타크릴산아연 하이브리드 복합체의 제조와 물성에 관한 연구)

  • Chang, Young-Wook;Won, Jong-Hoon;Joo, Hyun-Seok
    • Elastomers and Composites
    • /
    • v.40 no.1
    • /
    • pp.59-65
    • /
    • 2005
  • Zinc methacrylate(ZMA) was incorporated into ethylene-propylene diene rubber(EPDM) by direct mixing of the metal salt with the rubber or was in-situ prepared in the rubber matrix through neutralization reaction of zinc oxide(ZnO) and methacrylic acid(MAA). Tensile and tear tests showed that ZMA had a great reinforcing effect for the EPDM. It was also found that ZMA reinforced EPDM vulcanizates can retain their mechanical properties under thermo-oxidative aging. Moreover the incorporation of ZMA induces a substantial improvement in the adhesive strength of the EPDM onto aluminum substrate. The reinforcing effect and an enhancement in adhesion was greatly manifested when the ZMA is in-situ formed with an excess amount of ZnO. The extraordinary improvement in the properties is supposed to be related with the formation of ionic crosslink as well as the degree of dispersion or ZMA domain in the rubber matrix.

Chitosan/hydroxyapatite composite coatings on porous Ti6Al4V titanium implants: in vitro and in vivo studies

  • Zhang, Ting;Zhang, Xinwei;Mao, Mengyun;Li, Jiayi;Wei, Ting;Sun, Huiqiang
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.6
    • /
    • pp.392-405
    • /
    • 2020
  • Purpose: Titanium implants are widely used in the treatment of dentition defects; however, due to problems such as osseointegration failure, peri-implant bone resorption, and periimplant inflammation, their application is subject to certain restrictions. The surface modification of titanium implants can improve the implant success rate and meet the needs of clinical applications. The goal of this study was to evaluate the effect of the use of porous titanium with a chitosan/hydroxyapatite coating on osseointegration. Methods: Titanium implants with a dense core and a porous outer structure were prepared using a computer-aided design model and selective laser sintering technology, with a fabricated chitosan/hydroxyapatite composite coating on their surfaces. In vivo and in vitro experiments were used to assess osteogenesis. Results: The quasi-elastic gradient and compressive strength of porous titanium implants were observed to decrease as the porosity increased. The in vitro experiments demonstrated that, the porous titanium implants had no biological toxicity; additionally, the porous structure was shown to be superior to dense titanium with regard to facilitating the adhesion and proliferation of osteoblast-like MC3T3-E1 cells. The in vivo experimental results also showed that the porous structure was beneficial, as bone tissue could grow into the pores, thereby exhibiting good osseointegration. Conclusions: Porous titanium with a chitosan/hydroxyapatite coating promoted MC3T3-E1 cell proliferation and differentiation, and also improved osseointegration in vitro. This study has meaningful implications for research into ways of improving the surface structures of implants and promoting implant osseointegration.