DOI QR코드

DOI QR Code

Effect of Intermediate Layer Coated Diamond Particles on Performance of Diamond Tool

다이아몬드 입자에 형성된 중간층이 다이아몬드 공구 성능에 미치는 영향

  • Son, Kyung-Sik (Department of Materials Science and Engineering, Pusan National University) ;
  • Lee, Jung-Hoon (Department of Materials Science and Engineering, Pusan National University) ;
  • Choi, Yong-Je (Department of Materials Science and Engineering, Pusan National University) ;
  • Jung, Uoo-Chang (Korea Institute of Industrial Technology) ;
  • Chung, Won-Sub (Department of Materials Science and Engineering, Pusan National University)
  • Received : 2013.09.13
  • Accepted : 2013.10.19
  • Published : 2013.10.30

Abstract

In order to improve the performance of electrodeposited diamond-nickel composite, surface modification of diamond particles was carried out using powder immersion reaction assisted coating (PIRAC). Titanium and chromium were selected as coating elements, which are known as carbide former. With respect to the powder elements, various phases were formed on diamond; metallic Ti and TiC for Ti powder, $Cr_3C_2$ for Cr powder, and TiC and $Cr_3C_2$ for Ti-Cr mixed powder. Surface modified diamond particle showed higher specific surface area, especially Ti coating induced considerable increase of specific surface area. The increase of specific surface area suggests increase of surface roughness, and that was confirmed by surface observation using FE-SEM. In addition, wear properties of diamond-nickel composite including surface modified diamonds were improved, and Ti coated diamond showed the highest performance. The wear property of diamond-nickel composite is dependent on adhesion strength between diamond particle and nickel layer. Therefore, surface modification of diamond particle by PIRAC increasing surface roughness is effective to improve the properties of diamond-nickel composite.

Keywords

References

  1. C. R. Lin, C. T. Kuo, Surf. Coat. Technol., 110 (1998) 19. https://doi.org/10.1016/S0257-8972(98)00539-8
  2. L. W. de Resende, E. J. Corat, V. J. Trava-Airoldi, N. F. Leite, Diam. Relat. Mater., 10 (2001) 332. https://doi.org/10.1016/S0925-9635(00)00502-1
  3. H. K. Tonshoff, H. Hillmann-Apmann, Diam. Relat. Mater., 11 (2002) 742. https://doi.org/10.1016/S0925-9635(01)00727-0
  4. E. C. Lee, J. W. Choi, Surf. Coat. Technol., 148 (2001) 234. https://doi.org/10.1016/S0257-8972(01)01352-4
  5. J. G. Ahn, D. J. Kim, J. R. Lee, H. S. Chung, C. O. Kim, H. T. Hai, Surf. Coat. Technol., 201 (2006) 3793. https://doi.org/10.1016/j.surfcoat.2006.05.029
  6. Y. S. Liao, S. Y. Luo, Wear, 157 (1992) 325. https://doi.org/10.1016/0043-1648(92)90070-O
  7. T. J. Chen, Y. C. Chiou, R. T. Lee, Int. J. Mach. Tools Manuf., 49 (2009) 470. https://doi.org/10.1016/j.ijmachtools.2009.01.002
  8. Y. S. Liao, S. Y. Luo, Wear, 157 (1992) 325. https://doi.org/10.1016/0043-1648(92)90070-O
  9. H. Tokura, M. Yoshikawa, J. Mater. Sci., 24 (1989) 2231. https://doi.org/10.1007/BF02385446
  10. E. Breval, J. Cheng, D. K. Agrawal, J. Am. Ceram. Soc., 83 (2000) 2106.
  11. Y. H. Wang, J. B. Zang, M. Z. Wang, Y. Guan, Y. Z. Zheng, J. Mater. Process. Technol., 129 (2002) 369. https://doi.org/10.1016/S0924-0136(02)00661-1
  12. C. H. Li, H. B. Lu, W. H. Xiong, X. Chen, Surf. Coat. Technol., 150 (2002) 163. https://doi.org/10.1016/S0257-8972(01)01511-0
  13. X. Xu, X. Tie, H. Wu, Int. J. Refract. Met. Hard Mater., 25 (2007) 244. https://doi.org/10.1016/j.ijrmhm.2006.06.002
  14. X. Yin, I. Gotman, L. Klinger, E. Y. Gutmanas, Mater. Sci. Eng. A 396 (2005) 107. https://doi.org/10.1016/j.msea.2005.01.011
  15. E. Y. Gutmanas, I. Gotman, Mater. Sci. Eng. A 157 (1992) 233. https://doi.org/10.1016/0921-5093(92)90030-5
  16. P. Mogilevsky, E. Y. Gutmanas, I. Gotman, R. Telle, J. Eur. Ceram. Soc., 15 (1995) 527. https://doi.org/10.1016/0955-2219(95)00014-L
  17. H. Schafer, Chemical Transport Reactions, Sixth ed., Wiley, New York (1964).
  18. I. Mashal, L. Klinger, I. Gotman, E. Y. Gutmanas, Surf. Coat. Technol., 200 (2006) 3561. https://doi.org/10.1016/j.surfcoat.2004.10.123
  19. X. H. Chen, H. Wang, Y. M. Liu, M. Fang, Trans. Nonferrous Met. Soc. China, 19 (2009) 1348. https://doi.org/10.1016/S1003-6326(08)60448-3
  20. A. R. Castle, D. R. Gabe, Int. Mater. Rev., 44.2 (1999) 37. https://doi.org/10.1179/095066099101528216
  21. Y. Zhu, L. Wang, W. Yao, L. Cao, Appl. Surf. Sci., 171 (2001) 143. https://doi.org/10.1016/S0169-4332(00)00555-9
  22. J. Wan, R. Q. Zhang, H. F. Cheung, Comput. Mater. Sci., 23 (2002) 73. https://doi.org/10.1016/S0927-0256(01)00235-X
  23. Y. I. Nikitin, G. A. Petasyuk, Journal of Superhard Materials, 30.1 (2008) 58.
  24. B. Jauregui-Beloqui, J. C. Fernandez-Garcia, A. C. Orgiles-Barcelo, M. M. Mahiques-Bujanda, J. M. Martin-Martinez, J. M. Martin-Martinez, J. Adhes. Sci. Technol., 13 (1996) 695.