DOI QR코드

DOI QR Code

Effect of Working Pressure and Substrate Bias on the Tribology Properties of the Cr-Al-N Coatings

Cr-Al-N 코팅의 마찰마모 특성에 미치는 공정압력과 바이어스 전압의 영향

  • Choi, Seon-A (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Seong-Won (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Sungmin (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Hyung-Tae (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Oh, Yoon-Suk (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
  • 최선아 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 김성원 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 이성민 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 김형태 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 오윤석 (한국세라믹기술원 엔지니어링세라믹센터)
  • Received : 2017.11.15
  • Accepted : 2017.12.12
  • Published : 2017.12.31

Abstract

CrN coatings have been used as protective coatings for cutting tools, forming tools, and various tribological machining applications because these coatings have high hardness. Cr-Al-N coatings have been investigated to improve the properties of CrN coatings. Cr-Al-N coatings were fabricated by a hybrid physical vapor deposition method consisting of unbalanced magnetron sputtering and arc ion plating with different working pressure and substrate bias voltage. The phase analysis of the composition was performed using XRD (x-ray diffraction). Cr-Al-N coatings were grown with textured CrN phase and (111), (200), and (220) planes. The adhesion strength of the coatings tested by scratch test increased. The friction coefficient and removal rate of the coatings were measured by a ball-on-disk test. The friction coefficient and removal rate of the coatings decreased from 0.46. to 0.22, and from $2.00{\times}10^{-12}m^2/N$ to $1.31{\times}10^{-13}m^2/N$, respectively, with increasing bias voltage. The tribological properties of the coatings increased with increasing substrate bias voltage.

Keywords

References

  1. S. Veprek and M. J. Veprek-Heijman, Industrial applications of superhard nanocomposite coatings, Surf. Coat. Technol. 202 (2008) 5063-5073. https://doi.org/10.1016/j.surfcoat.2008.05.038
  2. K.-D. Bouzakis, N. Michailidis, S. Gerardis, G. Katirtzoglou, E. Lili, M. Pappa, et al., Correlation of the impact resistance of variously doped CrAlN PVD coatings with their cutting performance in milling aerospace alloys, Surf. Coat. Technol. 203 (2008) 781-785. https://doi.org/10.1016/j.surfcoat.2008.08.009
  3. R. Gahlin, M. Bromark, P. Hedenqvist, S. Hogmark, and G. Hakansson, Properties of TiN and CrN coatings deposited at low temperature using reactive arc-evaporation, Surf. Coat. Technol. 76 (1995) 174-180.
  4. G. Bertrand, H. Mahdjoub, and C. Meunier, A study of the corrosion behaviour and protective quality of sputtered chromium nitride coatings, Surf. Coat. Technol. 126 (2000) 199-209. https://doi.org/10.1016/S0257-8972(00)00527-2
  5. Y. Chim, X. Ding, X. Zeng, and S. Zhang, Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc, Thin Solid Films, 517 (2009) 4845- 4849. https://doi.org/10.1016/j.tsf.2009.03.038
  6. M. S. Kang, T.-g. Wang, J. H. Shin, R. Nowak, and K. H. Kim, Synthesis and properties of Cr- Al-Si-N films deposited by hybrid coating system with high power impulse magnetron sputtering (HIPIMS) and DC pulse sputtering, Trans. Nonferrous Met. Soc. China, 22 (2012) s729-s734. https://doi.org/10.1016/S1003-6326(12)61795-6
  7. M. Li and F. Wang, Effects of nitrogen partial pressure and pulse bias voltage on (Ti, Al) N coatings by arc ion plating, Surf. Coat. Technol. 167 (2003) 197-202. https://doi.org/10.1016/S0257-8972(02)00895-2
  8. X. Wan, S. Zhao, Y. Yang, J. Gong, and C. Sun, Effects of nitrogen pressure and pulse bias voltage on the properties of Cr-N coatings deposited by arc ion plating, Surf. Coat. Technol. 204 (2010) 1800-1810. https://doi.org/10.1016/j.surfcoat.2009.11.021
  9. M. Huang, G. Lin, Y. Zhao, C. Sun, L. Wen, and C. Dong, Macro-particle reduction mechanism in biased arc ion plating of TiN, Surf. Coat. Technol., 176 (2003) 109-114. https://doi.org/10.1016/S0257-8972(03)00017-3
  10. E. Fornies, R. E. Galindo, O. Sanchez, and J. Albella, Growth of CrN x films by DC reactive magnetron sputtering at constant N 2/Ar gas flow, Surf. Coat. Technol., 200 (2006) 6047-6053. https://doi.org/10.1016/j.surfcoat.2005.09.020
  11. J. Bujak, J. Walkowicz, and J. Kusinski, Influence of the nitrogen pressure on the structure and properties of (Ti, Al) N coatings deposited by cathodic vacuum arc PVD process, Surf. Coat. Technol. 180 (2004) 150-157.
  12. W.-D. Münz, D. Schulze, and F. Hauzer, A new method for hard coatings: ABSTM (arc bond sputtering), Surf. Coat. Technol. 50 (1992) 169-178. https://doi.org/10.1016/0257-8972(92)90058-I
  13. D. M. Mattox, Handbook of physical vapor deposition (PVD) processing: William Andrew (2010).
  14. S.-Y Chun, Microstructure and mechanical properties of nanocrystalline TiN films through increasing substrate bias, J. Korean Ceram. Soc., 47 (2010) 479-484. https://doi.org/10.4191/KCERS.2010.47.6.479
  15. H.W. Ryu, G.P. Choi, W.-S. Noh, Y.-J. park, and J.S. Park Effect of oxygen flow ratio on the crystallographic orientation of NiO Thin films deposited by RF magnetron sputtering, J. Korean Ceram. Soc., 41 (2004) 106-110. https://doi.org/10.4191/KCERS.2004.41.2.106
  16. J. Musil and S. Kadlec, Reactive sputtering of TiN films at large substrate to target distances, Vacuum, 40 (1990) 435-444. https://doi.org/10.1016/0042-207X(90)90241-P
  17. T. Elangovan, P. Kuppusami, R. Thirumurugesan, V. Ganesan, E. Mohandas, and D. Mangalaraj, Nanostructured CrN thin films prepared by reactive pulsed DC magnetron sputtering, Mater. Sci. Eng. B, 167 (2010) 17-25. https://doi.org/10.1016/j.mseb.2010.01.021
  18. S.-K. Tien, C.-H. Lin, Y.-Z. Tsai, and J.-G. Duh, Effect of nitrogen flow on the properties of quaternary CrAlSiN coatings at elevated temperatures, Surf. Coat. Technol. 202 (2007) 735- 739. https://doi.org/10.1016/j.surfcoat.2007.06.042
  19. M. Egawa, K. i. Miura, M. Yokoi, and I. Ishigami, Effects of substrate bias voltage on projection growth in chromium nitride films deposited by arc ion plating, Surf. Coat. Technol. 201 (2007) 4873-4878. https://doi.org/10.1016/j.surfcoat.2006.07.076
  20. G. Contoux, F. Cosset, A. Celerier, and J. Machet, Deposition process study of chromium oxide thin filmsobtained by dc magnetron sputtering, Thin Solid Films, 292 (1997) 75-84. https://doi.org/10.1016/S0040-6090(96)08941-9
  21. B. Bhushan, Development of rf sputtered chromium oxide coating for wear application, Thin Solid Films, 64 (1979) 231-241. https://doi.org/10.1016/0040-6090(79)90515-7
  22. I.-W. Park, D. S. Kang, J. J. Moore, S. C. Kwon, J. J. Rha, and K. H. Kim. Microstructures, mechanical properties, and tribological behaviors of Cr-Al-N, Cr-Si-N, and Cr-Al-Si-N coatings by a hybrid coating system. Surf. coat. Technol. 201 (2007) 5223-5227. https://doi.org/10.1016/j.surfcoat.2006.07.118
  23. J.-W. Lee, S.-K. Tien, and Y.-C. Kuo, The effects of pulse frequency and substrate bias to the mechanical properties of CrN coatings deposited by pulsed DC magnetron sputtering, Thin Solid Films, 494 (2006) 161-167. https://doi.org/10.1016/j.tsf.2005.07.190
  24. H.-S. Jang, Y.-S. Kim, J.-H. Lee, H.-G. Chun, Y.- Z. You, and D.-I. Kim, Effect of Substrate Bias Voltage on the Growth of Chromium Nitride Films, Korean J. Mater. Res., 17 (2007) 618-621. https://doi.org/10.3740/MRSK.2007.17.11.618
  25. S.A. Choi, S.W. Kim, S.M. Lee, H.T Kim, and Y.S Oh, Effect of Working Pressure and Substrate Bias on Phase Formation and Microstructure of Cr-Al-N Coatings, J. Korean Ceram. Soc., 54 (2017) 511-517. https://doi.org/10.4191/kcers.2017.54.6.05
  26. D. Mercs, N. Bonasso, S. Naamane, J.M. Bordes, C. Coddet, Mechanical and Tribological Properties of Cr-N and Cr-Si-N coatings reactively sputter deposited, Surf. Coat. Technol. 200 (2005) 403-407. https://doi.org/10.1016/j.surfcoat.2005.02.214
  27. A. Lasalmonie and J. Strudel, Influence of grain size on the mechanical behaviour of some high strength materials, J. Mater. Sci. 21 (1986) 1837- 1852. https://doi.org/10.1007/BF00547918
  28. Y. Chunyan, T. Linhai, W. Yinghui, W. Shebin, L. Tianbao, and X. Bingshe, The effect of substrate bias voltages on impact resistance of CrAlN coatings deposited by modified ion beam enhanced magnetron sputtering, Applied Surface Science, 255 (2009) 4033-4038. https://doi.org/10.1016/j.apsusc.2008.10.089
  29. M. Egawa, K. i. Miura, M. Yokoi, and I. Ishigami, Effects of substrate bias voltage on projection growth in chromium nitride films deposited by arc ion plating, Surface and Coatings Technology, 201 (2007) 4873-4878. https://doi.org/10.1016/j.surfcoat.2006.07.076
  30. M. Li and F. Wang, Effects of nitrogen partial pressure and pulse bias voltage on (Ti, Al) N coatings by arc ion plating, Surface and Coatings Technology, 167 (2003) 197-202. https://doi.org/10.1016/S0257-8972(02)00895-2