• Title/Summary/Keyword: adhesion

Search Result 5,609, Processing Time 0.037 seconds

Evaluation of the Characteristics of Asphalt Release Agents (국내 아스팔트 릴리스 에이전트의 특성 평가)

  • Kim, Boo-Il
    • International Journal of Highway Engineering
    • /
    • v.9 no.2 s.32
    • /
    • pp.13-25
    • /
    • 2007
  • Viscosity, adhesion and cohesion of asphalt binder are very important characteristics in asphalt pavement. However, these characteristics can cause some problems such as inaccurate amount of asphalt mixture, reduction of asphalt content and loss of workability during asphalt pavement construction. Asphalt release agent has been used to solve these problems. Diesel oil and vegetable oil are generally used as an asphalt release agent in Korea. However, these agents have been criticized from environmental and binder integrity reasons. Therefore, this study evaluated the characteristics of asphalt release agents including diesel oil, vegetable oil and two emulsion type oils. From the study, it was found that the diesel oil resolved the binder within ten minutes and vegetable oil stripped the binder from mixture within one hour after contacting with asphalt mixture. And also, from the test for estimating the application cycle of asphalt release agent, it appears that diesel oil and vegetable oil should be applied to construction equipments every time in their uses. However, diesel oil and vegetable oil showed a good performance as a lubricant for detaching the asphalt mixtures from the truck bed.

  • PDF

Preparation and Characterization of Hyaluronic Acid Loaded PLGA Scaffold by Emulsion Freeze-Drying Method (히알루론산을 함유한 PLGA 지지체의 제조 및 특성결정)

  • Ko, Youn-Kyung;Kim, Soon-Hee;Jeong, Jae-Soo;Park, Jung-Soo;Lim, Ji-Ye;Kim, Moon-Suk;Lee, Hae-Bang;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.505-511
    • /
    • 2007
  • Poly(lactide-co-glycolide)(PLGA) and hyaluronic acid (HA) has been widely used as biocompatible scaffold materials to regenerate tissue. In this present study, we fabricated microporous PLGA and HA loaded PLGA scaffolds by a emusion freeze-drying method. In order to confirm that the release profile of cytokine or water-soluble drugs, we manufactured the granulocyte macrophage colony stimulating factor(GM-CSF) loaded PLGA and HA-PLGA scaffold. All scaffolds were characterized using scanning electron microscope(SEM), mercury porosimeter and wettability measurement. Cell proliferation and viability were assessed by a 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium-bromide (MTT) test. The porosity of HA-PLGA scaffold was greater than 95% with the total pore area of $261\;m^2/g$. The HA-FLGA scaffold exhibited well interconnected pores to allow greater cell adhesion and prolixferation. It was proven by higher cell viability in the HA-PLGA scaffold than PLGA alone. This may be due to the enhanced natural properties and higher water retention capacity of HA.

Variation of Adhesion Characteristics of Acryl Copolymer/Multi-functional Monomer Based PSA by UV Curing (자외선 경화에 의한 아크릴 공중합체/다관능성 단량체 복합 감압점착제의 접착특성 변화)

  • Ryu, Chong-Min;Pang, Bei-Li;Kim, Hyung-Il;Park, Ji-Won;Lee, Seung-Woo;Kim, Hyun-Jung;Kim, Kyung-Man
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.315-320
    • /
    • 2012
  • Ultra violet (UV) curable pressure sensitive adhesives (PSA) were prepared by controlling both the structure of acryl copolymer and the functionality and content of multi-functional monomers. Acryl copolymer worked as the base polymer for giving the tackiness. Multi-functional monomers were used to vary the crosslinked structure and the degree of crosslink. Acryl copolymer showed the reduced peel strength after UV curing by decreasing the content of 2-ethylhexyl acrylate in the monomer composition. Both the peel strength of PSA and the content of residue found on silicon wafer decreased after UV curing by increasing the functionality of multi-functional monomers. UV curable PSA containing 20 phr six-functional monomer showed the higher peel strength before UV curing and the lower peel strength and the least residue on silicon wafer after UV curing.

Adhesion Behavior of Chondrocyte and Osteoblast on Surface-Modified Biodegradable PLLA Films and Scaffolds (표면개질된 생분해성 PLLA 필름 및 지지체의 연골세포와 조골세포 점착거동)

  • Choi, Ji-Yeon;Jung, Hyun-Jung;Park, Bang-Ju;Joung, Yoon-Ki;Park, Kwi-Deok;Han, Dong-Keun
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.357-363
    • /
    • 2012
  • Surface-modified poly(L-lactic acid) (PLLA) films and scaffolds were treated with plasma discharge in oxygen gas and subsequently subjected to $in$ $situ$ grafting of acrylic acid (AA) in order to increase the cell compatibility. The surface of AA-grafted PLLA was converted to hydroxyapatite (HA)-deposited PLLA in stimulated body fluid (SBF). After the samples were immersed in phosphate-buffered saline (PBS), fetal bovine serum (FBS), normal saline, or cell medium, the water contact angles were significantly reduced on the surface of HA-deposited PLLA. Chondrocyte and osteoblast showed a higher attachment and cell proliferation on HA-deposited surfaces and in particular, it was confirmed that chondrocyte was considerably influenced by HA. However, osteoblast showed better cell proliferation on the surfaces immersed in FBS, cell medium or HA-deposited surface. In addition, the cell proliferation in 3D scaffolds was much higher than that on film type, irrespective of chondrocyte and osteoblast. Therefore, such surface-modified PLLAs are expected to be useful as organic-inorganic hybrid scaffolds in the regeneration of cartilage and bone.

Effects of Oxyfluorinated Graphene Oxide Flake on Mechanical Properties of PMMA Artificial Marbles (함산소불소화 처리된 그래핀 산화물 플레이크가 PMMA 인조대리석의 기계적 물성에 미치는 영향)

  • Kim, Hyo-Chul;Jeon, Son-Yeo;Kim, Hyung-Il;Lee, Young-Seak;Hong, Min-Hyuk;Choi, Ki-Seop
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.251-261
    • /
    • 2012
  • The nanocomposites containing graphene oxide flakes were prepared in order to improve the mechanical properties of artificial marbles based on poly(methyl methacrylate)(PMMA) matrix. Graphene oxide flakes were prepared from graphite by oxidation with Hummers method followed by exfoliation with thermal treatment. Surface of graphene oxide flakes were modified with oxyfluorination in various oxygene:fluorine compositions to improve the interfacial compatibility. The nanocomposites containing graphenes modified with oxyfluorination in the oxygen content of 50% and higher showed the significant increase in flexural strength, flexural modulus, Rockwell hardness, Barcol hardness, and Izod impact strength. The morphology of fractured surface showed the improved interfacial adhesion between PMMA matrix and the graphenes which were properly treated with oxyfluorination. The mechanical properties of nanocomposite were deteriorated by increasing the content of graphene above 0.07 phr due to the nonuniform dispersion of graphenes.

A Study on the Electron Beam Crosslinking of Acrylic Pressure Sensitive Adhesives for Polarizer Film (전자선 조사를 통한 편광필름용 아크릴계 고분자의 가교화 반응에 대한 연구)

  • Park, Jung-Jin;Choi, Hong-June;Ko, Hwan-Soon;Jeong, Eun-Hwan;Youk, Ji-Ho
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.344-350
    • /
    • 2012
  • New pressure sensitive adhesives (PSAs) for polarizer film were prepared by electron beam (e-beam) radiation to acrylic copolymers, and their adhesive properties were investigated. The acrylic copolymers were synthesized by free radical polymerization of $n$-butylacrylate (BA), 2-hydroxyethyl methacrylate (HEMA), and acrylic acid (AA). The acrylic copolymers were coated on PET release films to a thickness of 25 ${\mu}m$, laminated to polarizer films, and then radiated with e-beam at room temperature. Gel fractions of all the acrylic copolymers after e-beam radiation at 50 kGy were higher than 93%, and their crosslinking densities were increased with increasing the content of HEMA units. PSA prepared by e-beam radiation of acrylic copolymer synthesized with a feed ratio of BA/HEMA/AA = 89.5/10/0.5 (w/w/w) at a dose of 50 kGy exhibited the best adhesion performances in terms of peel strength, creep resistance, durability and reliability, and light leakage. It is expected that the preparation method of PSAs via e-beam irradiation will improve the producibility and workability of polarizer film for liquid crystal display.

Physical and Mechanical Properties of The Lignin-based Carbon Nanofiber-reinforced Epoxy Composite (에폭시 강화 리그닌 기반 나노탄소섬유 복합재료의 특성)

  • Youe, Won-Jae;Lee, Soo-Min;Lee, Sung-Suk;Kim, Yong Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.406-414
    • /
    • 2016
  • The lignin-based carbon nanofiber reinforced epoxy composite has been prepared by immersing carbon nanofiber mat in epoxy resin solution in order to evaluate the physical and mechanical properties. The thermal and mechanical properties of the carbon nanofiber reinforced epoxy composite were analyzed using thermogravimetric analysis (TGA), differential scanning calorimeter (DSC) and tensile tester. It was found that the thermal properties of the carbon nanofiber reinforced epoxy composite improved, with its glass-transition temperature ($T_g$) increased from $90.7^{\circ}C$ ($T_g$ of epoxy resin itself) to $106.9^{\circ}C$. The tensile strengths of carbon nanofiber mats made from both lignin-g-PAN copolymer and PAN were 7.2 MPa and 9.4 MPa, respectively. The resulting tensile strength of lignin-based carbon nanofiber reinforced epoxy composite became 43.0 MPa, the six times higher than that of lignin-based carbon nanofiber mats. The carbon nanofibers were pulled out after the tensile test of the carbon nanofiber reinforced epoxy composite due to high tensile strength (478.8 MPa) of an individual carbon nanofiber itself as well as low interfacial adhesion between fibers and matrices, confirmed by the SEM analysis.

A Study on Application of Enzyme Additives to Improve Drying Speed of Urushi Lacquer (옻칠의 건조속도 향상을 위한 효소첨가제 적용 연구)

  • PARK, Ji Hyeon;PARK, Jung Hae;KIM, Soo Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.326-344
    • /
    • 2020
  • Laccase was applied to improve the drying speed of urushi lacquer to confirm a potential use of laccase as an enzyme additive. As a result of applying laccase of lacquer and white-rot fungi, drying times for both Korean and Chinese specimens were reduced. All of the specimens to which laccase was applied were dried(set to touch) within 60 minutes from the start of the drying, and the drying rate was improved as the content ratio of laccase increased. In addition, although there were differences in hardening drying time between Korean and Chinese lacquers, it was confirmed that hardening drying took place even at room with temperature of 20 ± 2 ℃ and humidity of 55-60%. As a result of lacquer layer analysis of the dried specimens, the drying speed was improved when the content ratio of laccase to urushiol was 5:1, and there were no differences in chromaticity and adhesion, confirmed that the layers were stable. It was observed that the gloss of both Korean and Chinese lacquers were reduced when laccase was applied. However, according to the analysis of FT-IR and Py-GC/MS, the changes in components were not as sufficient to affect the physical properties. Thus, its applicability as an additive was confirmed.

Clinical Evaluation of Video-Assisted Thoracic Surgery (VATS) (비디오 흉강경 수술의 임상적 고찰)

  • 원경준;최덕영
    • Journal of Chest Surgery
    • /
    • v.29 no.10
    • /
    • pp.1133-1137
    • /
    • 1996
  • From September 1994 to October 1995, we are reporting clinical results of 67 patients whom underwent video-assisted trio rabic surgery(VATS). 1. They were diagnosed as spontaneous pneumothorax In )5, diffuse interstitial lung disease in 9, empyema in 7, hemothorax in 5, malignant pleural effusion in 3, hyperhidrosis in 3, foreign body in chest cavity in 2, mesothelioma in 1, miliary tuberculosis in 1 and organizing pneumonia in 12. In pneumothorax, bullectomy in 33 and open bellectoiny in 2 due to pleural adhesion was done Hemostasis in 5, irrigation in 7, foreign body removal in 2, talcum powder insufrlation in 3, sympathectomy 3 as done. Thoracoscopic biopsy watt done In 12 3. For pneumothorax, operation was indicated as recurrent pneumothorax in 18, persistent air leak in 12, visible bullae In chest X-ray in 5. 4 Thoracoscopic biopsy was done in 12. They were interstitial pulmonary fibrosis in 9, miliary tuberculosis in 1, mesothelioma in 1, and organizing pneumonia in 1 .Among interstitial pulmonary fibrosis, usual interstitial pneumonia were 2 and diffuse interstitial pneumonia were 7. 5. Wo complication was found in 6) patients among 67 patients. The complication was found in 4 patients (2 persistent air leak, 2 contralateral lung atelectasis). We concluded that VATS was safe and beneficial in reducing postoperative complication and the role of thoracic surgery will increase markefdly.

  • PDF

Optimum Conditions for Improvement of Mechanical and Interfacial Properties of Thermal Treated Pine/CFRP Composites (열처리된 Pine/탄소섬유 복합재료의 기계적 및 계면물성 향상을 위한 최적 조건)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Ha-Seung;Baek, Yeong-Min;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.30 no.4
    • /
    • pp.241-246
    • /
    • 2017
  • The brittle nature in most FRP composites is accompanying other forms of energy absorption mechanisms such as fibre-matrix interface debonding and ply delamination. It could play an important role on the energy absorption capability of composite structures. To solve the brittle nature, the adhesion between pines and composites was studied. Thermal treated pines were attached on carbon fiber reinforced polymer (CFRP) by epoxy adhesives. To find the optimum condition of thermal treatment for pine, two different thermal treatments at 160 and $200^{\circ}C$ were compared to the neat case. To evaluate mechanical and interfacial properties of pines and pine/CFRP composites, tensile, lap shear and Izod test were carried out. The bonding force of pine grains was measured by tensile test at transverse direction and the elastic wave from fracture of pines was analyzed. The mechanical, interfacial properties and bonding force at $160^{\circ}C$ treated pine were highest due to the reinforced effect of pine. However, excessive thermal treatment resulted in the degradation of hemicellulose and leads to the deterioration in mechanical and interfacial properties.