• Title/Summary/Keyword: address electrode width

Search Result 13, Processing Time 0.028 seconds

Analysis of the Influence of the Address Electrode Width on High-speed Addressing Using the Vt Close Curve and Dynamic Vdata Margin

  • Kim, Yong-Duk;Park, Se-Kwang
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.5
    • /
    • pp.183-190
    • /
    • 2005
  • In order to drive the high-density plasma displays, a high-speed driving technology must be researched. In this experiment, the relationship between the width of the address electrode and high-speed driving is analyzed using the Vt close curve and the panel structure for high-speed driving is proposed. In addition we show that the wider the width of the address electrode is, the narrower the width of the scan pulse becomes. Therefore, we could achieve the minimum data voltage of 50.1V at a scan pulse width of $1.0/{\mu}s$ and a ramp voltage of 210V at an address electrode width of $180/{\mu}m$ for the high-speed driving 4-inch test PDP.

Effects of Address Electrode Width on Address Discharge Under Variable Ambient Temperature in AC-PDP

  • Jang, Soo-Kwan;Tae, Heung-Sik;Jung, Eun-Young;Ahn, Jung-Chull;Yoo, Min-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.412-415
    • /
    • 2008
  • It is known that the address discharge delay time during an address period strongly depends on the wall charge leakage. It was observed that the wall charge leakage during an address period is related to both the address width and the ambient temperature. Accordingly, the effects of address electrode width on the address discharge and wall voltage variation during an address period were examined under variable temperatures.

  • PDF

The 3- dimensional analysis for the discharge of PDP according to the pulse width of voltage applied to the address electrode during sustain period (Sustain 구간중 Address 전극에 인가되는 전압 펄스 폭에 따른 3차원 방전형상 분석)

  • Kwon, Hyoung-Seok;Choi, Hoon-Young;Lee, Seung-Gol;Lee, Seok-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1830-1833
    • /
    • 2002
  • We measured 3-dimensional temporal behavior of the light emitted from AC plasma display panel(PDP) at various auxiliary voltage pulse width supplied to the address electrode in sustain period using scanned point detecting system. In the case of applying an auxiliary address voltage pulse, the light emission starts at the inner edges of the cathode so the larger discharge volume toward address electrode can be obtained compared with the normal sustain discharge. Especially, when the auxiliary voltage pulse width is the $2{\mu}s$, the maximum luminance and long emission time can be obtained.

  • PDF

New Address Electrode Suitable for Fast Addressing with High Xe ac-PDP

  • Lee, Don-Kyu;Lee, Ho-Jun;Lee, Hae-June;Kim, Dong-Hyun;Park, Chung-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.564-567
    • /
    • 2004
  • New address electrode having separated dual electrode is suggested to reduce addressing time in ac PDP. Addressing characteristics of suggested electrode has been investigated in the test panel with high Xe partial pressure. It has been found that both the formative and jitter width of the suggested electrode is improved by 10 -20 % over the wide range of address voltage level compared with the conventional one. The dynamic margin of the panel also greatly improved. The key feature behind this type of structure is that it can extend the controllability of the wall charge distribution during the reset and address discharge without significant increase in capacitive load of address electrode.

  • PDF

Effect of Auxiliary Address Pulse on Face-to-face Sustain Electrode Structure in AC-PDP

  • Kim, Bo-Sung;Tae, Heung-Sik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.605-608
    • /
    • 2007
  • The discharge characteristics of the face-to-face sustain electrode structure employing auxiliary address pulse are investigated under a sustain driving frequency of 20 kHz and various auxiliary address pulse widths (500 ns, $1{\mu}s$, $2\;{\mu}s$) in the 6-in. test panel (42-in. Full HD grade) with a pressure of 450 Torr and a 4 % Xe-content. The luminance and the luminous efficiency at the auxiliary address pulse width of 500 ns are improved more than these of $1\;{\mu}s$ and $2\;{\mu}s$. At the auxiliary address pulse width of 500 ns, the luminous efficiency shows about 0.96 lm/W at the auxiliary pulse of 90 V and the sustain voltage of 260 V.

  • PDF

Dual Address Electrodes for Fast Addressing Method of ac-PDP with High Xe% Working Gas

  • Lee, D.K.;Choi, J.H.;Choi, W.S.;Ok, J.W.;Kwon, B.S.;Lee, H.J.;Lee, H.J.;Kim, D.H.;Park, C.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.247-250
    • /
    • 2005
  • In this paper, new address electrode having separated dual electrodes is suggested to reduce addressing time in ac PDP. It had been found that both the formative and jitter width of the suggested electrode are improved by $10{\sim}20$ % compared with the conventional one on IMID 04'. So we experiment other several kinds of the separated electrodes, and the change in discharge characteristics is analyzed by using a two-dimensional fluid simulation. The key feature of the suggested structure is that the distribution of Xe and Ne ion is controllable during the address periods without significant increases in the capacitive load of the address electrodes.

  • PDF

The Analysis of the Correlation between the Sustain-Electrode Gap of an AC-PDP and Address Discharge Characteristics (AC-PDP의 유지방전 전극사이의 간격과 어드레스 방전 특성과의 상관성 분석)

  • Lee, Young-Jun;Choi, Su-Sam;Park, Se-Kwang;Kim, Yong-Duk
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.5
    • /
    • pp.239-244
    • /
    • 2006
  • To drive the high-image quality plasma displays of XGA and/or full-HD, we must effectively improve the driving waveform, which get the reset period for the stabilized control of wall charges, the address period to select discharge or non-discharge, and sustain period for luminance in 1 TV-frame, and also the display quality. To accomplish them, the development of the technology for the fast address discharge is required. In this paper, the correlation between the sustain-electrode gap and address discharge characteristics for the high-speed addressing was analyzed using the measurements of dynamic voltage margins. Results showed that the narrower the gap between the sustain electrodes, the narrower the with of the scan pulse became and a dynamic margin of data voltage of 29.2 V was obtained at scan pulse width of $1.0{\mu}s\;and\;V_{ramp}$ of 240 V for driving 4-inch test penal, which the gap between sustain electrodes was $65{\mu}m$.

Embodiment of Low Operating Voltage in Positive Column AC-PDPs

  • Kim, Hyun;Tae, Heung-Sik;Chien, Sung-Il
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.95-98
    • /
    • 2003
  • The positive column discharge characteristics in the long gap (440 ${\mu}m$) are investigated based on the voltage distribution among three electrodes. In particular, the effects of the amplitude and width of the short pulse applied to the address electrode on the positive column discharge characteristics are examined intensively. By proper controlling of the amplitude and width of the address short pulse, it is found that the positive column discharge in the long gap is well constructed. As a result, under the stable static voltage margin condition, the firing and sustaining voltages are as low as those of conventional short gap(60 ${\mu}m$) discharge($V _f=220V$, $V_s=150V$) and the color purity is improved. Moreover, the luminous efficiency increases up to 60% in comparison with the conventional case.

  • PDF

A New High Speed Addressing Method Using The Priming Effect in AC PDP

  • Kim, Jae-Sung;Yang, Jin-Ho;Kim, Tae-Jun;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.105-108
    • /
    • 2003
  • A new high speed addressing method is proposed to reduce the addressing time below lus per line in AC PDP. In this method, the priming discharge is used to achieve a high speed addressing without adding an auxiliary electrode. Two different types of priming discharges were studied to achieve a high speed addressing and also reduce the inherent light output caused by the priming discharge in order to improve the contrast ratio characteristics. In the panel experiment, the addressing was successfully done with a lus address pulse width in the new method and the better contrast ratio was achieved in the Y-A priming rather than the Y-X priming case even though the reduction of the address period was smaller than that of the Y-X priming due to the extra address time for the priming discharges.

  • PDF

Improved Waveform during the Addressing Period for the Improvement of the Addressing Time for AC PDPs

  • Lim, Jong-Sik;Kim, Hyun-Seok;Kim, Joon-Yub
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.511-514
    • /
    • 2004
  • ADS(Address Display period Separation) driving method has been considered to be the most appropriate driving technique for AC PDPs. However when the ADS driving method is applied to the high-resolution AC PDP, the required long addressing time often becomes a problem. In this paper, we present a new waveform for reducing the addressing time and for the stable addressing discharge. In this new waveform, a wall charge acceleration pulse is applied to the common electrode right after 80us scan time. In this way, the charge generated by the addressing discharge is accelerated to the electrodes. Experiments using the wall charge acceleration pulse showed that we could stably address an AC PDP with the scan pulses having pulse width of 1 us

  • PDF