• 제목/요약/키워드: additive process

Search Result 841, Processing Time 0.023 seconds

Development of powder with increased rutin content from mulberry leaves for the application of food materials

  • Kim, Hyun-bok;Kim, Jung Bong;Ju, Wan-Taek;Kim, Sun Lim;Lim, Jung Dae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.35 no.2
    • /
    • pp.77-82
    • /
    • 2017
  • We studied on improvement method of rutin content using mulberry leaf powder. Mulberry leaves were collected and then hot-air dried and powdered for experiment. As a result, we have developed a pre-treatment method that extracts mulberry leaf powder with water or fermented alcohol with reflux extractor and then increases the rutin content by improving the process. Citric acid (0.1 ~ 1%) and 1000 ml fermented alcohol (50 ~ 95%) or water (10 ~ 50 times) was extracted with 100 g of mulberry leaf powder using a reflux extraction device ($80{\sim}90^{\circ}C$, 1 hour, twice). The extracts were collected, filtered and concentrated. For the recrystallization, the concentrate was dissolved by adding distilled water and allowed to stand at a low temperature. Then, the supernatant was discarded by centrifugation, and only the residue was lyophilized to prepare a final powder. As a result, regardless of the concentration of citric acid added, the content of rutin was higher in 90% fermented alcohol extract. Whereas, in the case of extracting with water, citric acid 0.5% was added to water 25 times as much as the weight of mulberry leaf powder, and 2274.4 (mg / 100g) of rutin content was highest in the case of refluxing twice at $80^{\circ}C$ for 1 hour. The powder with increased rutin content is expected to be applicable to various foods as a food additive. In addition, it can contribute to the improvement of the farm income by promoting consumption of mulberry leaf while satisfying the consumers' desire for functional food intake.

Electrochemical Behavior of Sm(III) on the Aluminium-Gallium Alloy Electrode in LiCl-KCl Eutectic

  • Ye, Chang-Mei;Jiang, Shi-Lin;Liu, Ya-Lan;Xu, Kai;Yang, Shao-Hua;Chang, Ke-Ke;Ren, Hao;Chai, Zhi-Fang;Shi, Wei-Qun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.161-176
    • /
    • 2021
  • In this study, the electrochemical behavior of Sm on the binary liquid Al-Ga cathode in the LiCl-KCl molten salt system is investigated. First, the co-reduction process of Sm(III)-Al(III), Sm(III)-Ga(III), and Sm(III)-Ga(III)-Al(III) on the W electrode (inert) were studied using cyclic voltammetry (CV), square-wave voltammetry (SWV) and open circuit potential (OCP) methods, respectively. It was identified that Sm(III) can be co-reduced with Al(III) or Ga(III) to form AlzSmy or GaxSmy intermetallic compounds. Subsequently, the under-potential deposition of Sm(III) at the Al, Ga, and Al-Ga active cathode was performed to confirm the formation of Sm-based intermetallic compounds. The X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) analyses indicated that Ga3Sm and Ga6Sm intermetallic compounds were formed on the Mo grid electrode (inert) during the potentiostatic electrolysis in LiCl-KCl-SmCl3-AlCl3-GaCl3 melt, while only Ga6Sm intermetallic compound was generated on the Al-Ga alloy electrode during the galvanostatic electrolysis in LiCl-KCl-SmCl3 melt. The electrolysis results revealed that the interaction between Sm and Ga was predominant in the Al-Ga alloy electrode, with Al only acting as an additive to lower the melting point.

Literature Review on Rheological Properties and Required Performances of 3D Printable Cementitious Materials (3D 프린팅 시멘트계 재료의 유변학적 물성과 요구 성능에 관한 문헌 조사)

  • Oh, Sangwoo;Hong, Geuntae;Choi, Seongcheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.41-49
    • /
    • 2021
  • 3D printing techniques have been recently adopted in the construction industry. It mainly utilizes additive manufacturing which is the fabrication process depositing successive layers of materials without any formworks. Conventional cementitious materials may not be directly applicable to 3D printing because 3D printable cementitious materials is required to satisfy such characteristics as pumpability, extrudability, and buildability in a fresh state. This study aimed to investigate rheological properties and required performances of 3D printable cementitious materials, by reviewing existing studies. Test methods and equipments, evaluation results and characteristics of mixture additives were compared. Based on reviews of existing studies, this study indicates that the viscosity is mainly relevant to the pumpability of 3D printable materials whereas the yield stress and thixotropy are important in securing buildability of the materials.

High Temperature Oxidation Behavior of 316L Austenitic Stainless Steel Manufactured by Laser Powder Bed Fusion Process (Laser powder bed fusion 공정으로 제조된 오스테나이트계 316L 스테인레스 강의 고온 산화 거동)

  • Hwang, Yu-Jin;Wi, Dong-Yeol;Kim, Kyu-Sik;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.28 no.2
    • /
    • pp.110-119
    • /
    • 2021
  • In this study, the high-temperature oxidation properties of austenitic 316L stainless steel manufactured by laser powder bed fusion (LPBF) is investigated and compared with conventional 316L manufactured by hot rolling (HR). The initial microstructure of LPBF-SS316L exhibits a molten pool ~100 ㎛ in size and grains grown along the building direction. Isotropic grains (~35 ㎛) are detected in the HR-SS316L. In high-temperature oxidation tests performed at 700℃ and 900℃, LPBF-SS316L demonstrates slightly superior high-temperature oxidation resistance compared to HR-SS316L. After the initial oxidation at 700℃, shown as an increase in weight, almost no further oxidation is observed for both materials. At 900℃, the oxidation weight displays a parabolic trend and both materials exhibit similar behavior. However, at 1100℃, LPBF-SS316L oxidizes in a parabolic manner, but HR-SS316L shows a breakaway oxidation behavior. The oxide layers of LPBF-SS316L and HR-SS316L are mainly composed of Cr2O3, Fe-based oxides, and spinel phases. In LPBF-SS316L, a uniform Cr depletion region is observed, whereas a Cr depletion region appears at the grain boundary in HR-SS316L. It is evident from the results that the microstructure and the high-temperature oxidation characteristics and behavior are related.

A Study on the Etching of SUS MASK using Automatic Liquid Management System (자동액관리 시스템을 이용한 SUS MASK 에칭에 관한 연구)

  • Lee, Woo-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.4
    • /
    • pp.323-327
    • /
    • 2021
  • This paper produced SUS MASK, which is used for OLEDs, using an automatic liquid management system. The SUS MASK was tested by setting the hole diameter to 0.4 mm. The additive F300 was found to be excellent as the hole diameter was close to 0.4 mm and the error range was measured to be 0.08 on average. And as a result of measuring the weight reduction amount of CuCl2 and FeCl3 according to the change in oxidation-reduction potential (ORP), FeCl3 is relatively sensitive to ORP changes. Experiments were conducted on whether ORP (610 mV) and specific gravity (1.463) were automatically controlled while continuously etching the SUS Mask. Experimental results show that the automatic liquid management system is well controlled because the setting value is not significantly changed. After setting the hole diameter to 0.4 mm as the target, the experiment results were measured from 0.36 to 0.44. Therefore, it is expected that etching processing in the manufacturing process of SUS MASK can be improved with higher precision by applying the manufactured automatic liquid management system.

Efficiency Evaluation of Transition Metal-Based Additives for Efficient Thermochemical Conversion of Coffee Waste (커피찌꺼기의 효율적인 열화학 전환을 위한 전이 금속 기반 첨가제 효율 평가)

  • Cho, Dong-Wan;Jang, Jeong-Yun;Kim, Sunjoon;Yim, Gil-Jae
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.1
    • /
    • pp.17-24
    • /
    • 2022
  • This work examined the effect of mixing transition metal-based additives [FeCl3, Fe-containing paper mill sludge (PMS), CoCl2·H2O, ZrO2, and α-Fe2O3] on the thermochemical conversion of coffee waste (CW) in carbon dioxide-assisted pyrolysis process. Compared to the generation amounts of syngas (0.7 mole% H2 & 3.0 mole% CO) at 700℃ from single pyrolysis of CW, co-pyrolysis in the presence of Fe- or Zr-based additives resulted in the enhanced production of syngas, with the measured concentrations of H2 and CO ranging 1.1-3.4 mole% and 4.6-13.2 mole% at the same temperature, respectively. In addition, α-Fe2O3 biochar possessed the adsorption capacity of As(V) (19.3 mg g-1) comparable to that of ZrO2-biochar (21.2 mg g-1). In conclusion, solid-type Fe-based additive can be highly considered as an efficient catalyst to simultaneously produce syngas (H2 & CO) as fuel energy resource and metal-biochar as sorbent.

Effect of Particle Sphericity on the Rheological Properties of Ti-6Al-4V Powders for Laser Powder Bed Fusion Process (LPBF용 타이타늄 합금 분말의 유변특성에 대한 입자 구형도의 영향)

  • Kim, T.Y.;Kang, M.H.;Kim, J.H.;Hong, J.K.;Yu, J.H.;Lee, J.I.
    • Journal of Powder Materials
    • /
    • v.29 no.2
    • /
    • pp.99-109
    • /
    • 2022
  • Powder flowability is critical in additive manufacturing processes, especially for laser powder bed fusion. Many powder features, such as powder size distribution, particle shape, surface roughness, and chemical composition, simultaneously affect the flow properties of a powder; however, the individual effect of each factor on powder flowability has not been comprehensively evaluated. In this study, the impact of particle shape (sphericity) on the rheological properties of Ti-6Al-4V powder is quantified using an FT4 powder rheometer. Dynamic image analysis is conducted on plasma-atomized (PA) and gas-atomized (GA) powders to evaluate their particle sphericity. PA and GA powders exhibit negligible differences in compressibility and permeability tests, but GA powder shows more cohesive behavior, especially in a dynamic state, because lower particle sphericity facilitates interaction between particles during the powder flow. These results provide guidelines for the manufacturing of advanced metal powders with excellent powder flowability for laser powder bed fusion.

DRY ETCHING CHARACTERISTICS OF INGAN USING INDUCTIVELY COUPLED $Cl_2/CHF_3,{\;}Cl_2/CH_4$ AND Cl_2/Ar PLASMAS.

  • Lee, D.H.;Kim, H.S.;G.Y. Yeom;Lee, J.W.;Kim, T.I.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 1999.10a
    • /
    • pp.59-59
    • /
    • 1999
  • In this study, planer inductively coupled $Cl_2$ based plasmas were used to etch InGaN and the effects of plasma conditions on the InGaN etch properties have been characterized using quadrupole mass spectrometry(QMS) and optical emission spectroscopy(OES). As process conditions used to study the effects of plasma characteristics on the InGaN etch properties, $Cl_2$ was used as the main etch gas and $CHF_3,{\;}CH_4$, and Ar were used as additive gases. Operational pressure was varied from SmTorr to 3OmTorr, inductive power and bias voltage were varied from 400W to 800W and -50V to -250V, respectively while the substrate temperature was fixed at 50 centigrade. For the $Cl_2$ plasmas, selective etching of GaN to InGaN was obtained regardless of plasma conditions. The small addition of $CHF_3$ or Ar to $Cl_2$ and the decrease of pressure generally increased InGaN etch rates. The selective etching of InGaN to GaN could be obtained by the reduction of pressure to l5mTorr in $CI_2/IO%CHF_3{\;}or{\;}CI_2/IO%Ar$ plasma. The enhancement of InGaN etch rates was related to the ion bombardment for $CI_2/Ar$ plasmas and the formation of $CH_x$ radicals for $CI_2/CHF_3(CH_4)$ plasmas.

  • PDF

Comparative study of individual and co-application of biochar and wood vinegar on growth of perilla (Perilla frutescens var.) and soil quality

  • Yun-Gu Kang;Nam-Ho Kim;Jun-Ho Kim;Da-Hee Ko;Jae-Han Lee;Jin-Hyuk Chun;Taek-Keun Oh
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.2
    • /
    • pp.357-366
    • /
    • 2022
  • Biochar can be obtained by using various types of biomass under an oxygen-limited condition. Biochar can be utilized for various applications such as soil improvement, waste management, growth promotion, and adsorption. Wood vinegar is produced by the process of pyrolysis wood biomass and is used as a growth promoter, for soil improvement, and as a feed additive. When wood vinegar is treated on soil, it acts to control soil pH, improve nutrient availability, and alleviate N2O and NH3 volatilization. The objective of this study was to evaluate the effect of biochar and wood vinegar on the growth of perilla and soil quality. The experiment was conducted by using a Wagner pot (1·5,000 a-1) in a glass greenhouse. The biochar was produced by pyrolysis at 450℃ for 30 minutes using rice husk and rice straw. Wood vinegar was diluted to 1 : 500 (v·v-1) and used in this experiement. In the results of a cultivation experiment, co-application of biochar and wood vinegar enhanced the growth of perilla. In particular, rice husk biochar affected the leaves of the perilla, and rice straw biochar influenced the stems of the perilla. In addition, soil quality after treatment with biochar and wood vinegar applied together was highest compared to other units. Therefore, it is anticipated that co-application of biochar and wood vinegar will be more productive and improve soil quality compared to individual utilization of biochar and wood vinegar.

Study on Reaction Behavior of Mg-FeB Phase for Rare Earth Elements Recovery from End-of-life Magnet

  • Sangmin Park;Dae-Kyeom Kim;Rongyu Liu;Jaeyun Jeong;Taek-Soo Kim;Myungsuk Song
    • Journal of Powder Materials
    • /
    • v.30 no.2
    • /
    • pp.101-106
    • /
    • 2023
  • Liquid metal extraction (LME), a pyrometallurgical recycling method, is popular owing to its negligible environmental impact. LME mainly targets rare-earth permanent magnets having several rare-earth elements. Mg is used as a solvent metal for LME because of its selective and eminent reactivity with rare-earth elements in magnets. Several studies concerning the formation of Dy-Fe intermetallic compounds and their effects on LME using Mg exist. However, methods for reducing these compounds are unavailable. Fe reacts more strongly with B than with Dy; B addition can be a reducing method for Dy-Fe intermetallic compounds owing to the formation of Fe2B, which takes Fe from Dy-Fe intermetallic compounds. The FeB alloy is an adequate additive for the decomposition of Fe2B. To accomplish the former process, Mg must convey B to a permanent magnet during the decomposition of the FeB alloy. Here, the effect of Mg on the transfer of B from FeB to permanent magnet is observed through microstructural and phase analyses. Through microstructural and phase analysis, it is confirmed that FeB is converted to Fe2B upon B transfer, owing to Mg. Finally, the transfer effect of Mg is confirmed, and the possibility of reducing Dy-Fe intermetallic compounds during LME is suggested.