Browse > Article
http://dx.doi.org/10.4150/KPMI.2022.29.2.99

Effect of Particle Sphericity on the Rheological Properties of Ti-6Al-4V Powders for Laser Powder Bed Fusion Process  

Kim, T.Y. (School of Materials Science and Engineering, Pusan National University)
Kang, M.H. (School of Materials Science and Engineering, Pusan National University)
Kim, J.H. (Titanium Department, Korea Institute of Materials Science (KIMS))
Hong, J.K. (Titanium Department, Korea Institute of Materials Science (KIMS))
Yu, J.H. (Powder Materials Division, Korea Institute of Materials Science (KIMS))
Lee, J.I. (School of Materials Science and Engineering, Pusan National University)
Publication Information
Journal of Powder Materials / v.29, no.2, 2022 , pp. 99-109 More about this Journal
Abstract
Powder flowability is critical in additive manufacturing processes, especially for laser powder bed fusion. Many powder features, such as powder size distribution, particle shape, surface roughness, and chemical composition, simultaneously affect the flow properties of a powder; however, the individual effect of each factor on powder flowability has not been comprehensively evaluated. In this study, the impact of particle shape (sphericity) on the rheological properties of Ti-6Al-4V powder is quantified using an FT4 powder rheometer. Dynamic image analysis is conducted on plasma-atomized (PA) and gas-atomized (GA) powders to evaluate their particle sphericity. PA and GA powders exhibit negligible differences in compressibility and permeability tests, but GA powder shows more cohesive behavior, especially in a dynamic state, because lower particle sphericity facilitates interaction between particles during the powder flow. These results provide guidelines for the manufacturing of advanced metal powders with excellent powder flowability for laser powder bed fusion.
Keywords
Ti-6Al-4V; Powder sphericity; Powder flowability; Rheological properties; Laser powder bed fusion;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 R. Freeman: Powder Technol., 174 (2007) 25.   DOI
2 X. Liu, C. Drakontis and S. Ami: Int. J. Cosmet. Sci., 42 (2020) 208.   DOI
3 M. Leaper, K. Ali and A. J. Ingham: Chem. Eng. Technol., 41 (2018) 102.   DOI
4 Q. Sian, S. Sittipod, A. Garg and R. P. K. Ambrose: J. Cereal Sci., 63 (2015) 88.   DOI
5 J. Clayton: Metal Powder Rep., 69 (2014) 14.   DOI
6 X. Fu, D. Huck, L. Makein, B. Armstrong, U. Willen and T. Freeman: Particuology, 10 (2012) 203.   DOI
7 R. Freeman and X. Fu: Powder Metall., 51 (2008) 196.   DOI
8 H. Kissel: Met. Powder Rep., 76 (2021) 196.   DOI
9 D. Geldart, N. Harnby and A. Wong: Powder Technol., 37 (1984) 25.   DOI
10 J. Visser: Powder Technol., 58 (1989) 1.   DOI
11 A. Strondl, O. Lyckfeldt, H. Bordin and U. Ackelid: JOM, 67 (2015) 549.   DOI
12 T. S. Jang, D. E. Kim, G.-N. Han, C.-B. Yoon and H. D. Jung: Biomed. Eng. Lett., 10 (2020) 505.   DOI
13 V. Seyda and D. Herzog: J. Laser Appl., 29 (2017) 022311.   DOI
14 S. E. Brika, M. Letenneur, C. A. Dion and V. Brailovski: Addit. Manuf., 31 (2020) 100929.   DOI
15 P. Li, D. H. Warner, A. Fatemi and N. Phan: Int. J. Fatigue, 85 (2016) 130.   DOI
16 J.Hernandez, S. J. Li, E. Martinez, L. E. Murr, X. M.Pan, K. N. Amato, X. Y. Cheng, F. Yang, C. A. Terrazas, S. M. Gaytan, Y. L. Hao, R.Yang, F.Medina, R. B.Wicker: J. Mater. Sci. Technol., 29 (2013) 1011.   DOI
17 J. Capus: Met. Powder Rep., 72 (2017) 384.   DOI
18 P. Sun, Z. Z. Fang, Y. Zhang and Y. Xia: JOM, 69 (2017) 1853.   DOI
19 I. Polozov, V. Suriiarov, A. Kantyukov, N. Razumov, I. Goncharov, T. Makhmutov, A. Silin, A. Kim, K. Starikov, A. Shamshurin and A. Popovich: Addit. Manuf., 34 (2020) 101374.
20 P. Moghimian, T. Poirie, M. H. Korayem, J. A. Zavala, J. Kroeger, F. Marion, F. Larouche: Addit. Manuf., 43 (2021) 102017.
21 A. S. Tehrani, M. H. Korayem, S. Shao, M. Haghshenas, N. Shamsaei: Addit. Manuf., 51(2022) 102584.
22 D. Schulze: Powders and Bulk Solids. Springer, (2008) 22.
23 A. Kreitcberg, V. Brailovski and S. Prokoshkin: J. Mater. Process. Technol., 252 (2018) 821.   DOI
24 M. H. Korayem, J. Zhang and Y. Zou: Powder Technol., 392 (2021) 536.   DOI
25 W. H. Wei, L. Z. Wang, T. Chen, X. M. Duan and W. Li: Adv. Powder Technol., 28 (2017) 2431.   DOI
26 A. Madian, M. Leturia, C. Ablitzer, G. B. Granger and K. Saleh: Nucl. Eng. Technol., 52 (2020) 1714.   DOI
27 G. Forte, P. J. Clark, Z. Yang, E. H. Stitt and M. Marigo: Powder Technol., 337 (2018) 25.   DOI
28 A. B. Badiru, V. V. Valencia and D. Liu: Additive Manufacturing Handbook: Product Development for the Defense Industry, CRC Press, (2017).
29 Y. Sun, M. Aindow and R. J. Hebert: Addit. Manuf., 21 (2018) 544.
30 V. Bhavar, P. Kattire, V. Patil, S. Khot, K. Gujar and R. Singh: Additive Manufacturing Handbook, CRC Press, (2017) 251.
31 R. E. Laureijs, J. B. Roca, S. P. Narra, C. Montgomery, J. L. Beuth and E. R. H. Fuchs: J. Manuf. Sci. Eng., 139 (2017) 081010.   DOI
32 A. W. Jenike: Storage and Flow of Solids. Bulletin No. 123, Utah State University, 53 (1964).
33 B. Dutta and F. S. Froes: Met. powder Rep., 72 (2017) 96.   DOI
34 S. Vock, B. Kloden, A. Kirchner, T. Weissgarber and B. Kieback: Prog. Addit. Manuf., 4 (2019) 383.   DOI
35 B. Lee, D.-K. Kim, Y. I. Kim, D. H. Kim, Y. Son, K.-T. Park and T.-S. Kim J. Powder Mater., 27 (2020) 509.
36 S. Bahl, S. Suwas and K. Chatterjee: Int. Mater. Rev., 66 (2021) 114.   DOI
37 E. Uhlmann, R. Kersting, T. B. Klein, M. F. Cruz and A. V. Borille: Procedia Cirp, 35 (2015) 55.   DOI
38 L. Cordova, M. Campos and T. Tinga: JOM, 71 (2019) 1062.   DOI
39 D. Herzog, V. Seyda, E. Wycisk and C. Emmelmann: Acta Mater., 117 (2016) 371.   DOI
40 Z.Wu, M. Asherloo, R. Jiang, M. H. Delpazir, N. Sivakumar, M. Paliwal, J. Capone, B. Gould, A. Rollett, Amir Mostafaei, Addit. Manuf., 47 (2021) 102323.
41 M. Leturia, M. Benali, S. Lagarde, I. Ronga and K. Saleh: Powder Technol., 253 (2014) 406.   DOI