• Title/Summary/Keyword: adaptive receiver

Search Result 327, Processing Time 0.029 seconds

Adaptive Multi-stage Parallel Interference Cancellation Receiver for a Multi-rate DS-CDMA System (다중전송률 DS-CDMA 시스템을 위한 적응다단병렬간섭제거수신기)

  • 한승희;이재홍
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.89-92
    • /
    • 2001
  • In this paper, adaptive multi-stage parallel interference cancellation (PIC) receiver is considered for a multi-rate DS-CDMA system. In each stage of the adaptive multi-stage PIC receiver, multiple access interference (MAI) estimates are obtained using the sub-bit estimates from the Previous stage and the adaptive weights for the sub-bit estimates. The adaptive weights are obtained by minimizing the mean squared error between the received signal and its estimate through a least mean square (LMS) algorithm. It is shown that the adaptive multi- stage PIC receiver achieves smaller BER than the matched filter receiver, multi-stage PIC receiver, and multi-stage partial PIC receiver for the multi-rate DS-CDMA system in a Rayleigh fading channel.

  • PDF

Adaptive Despreading Receiver for Multi-Code PW-CDMA System with Binary-Level Clipping (이진 레벨 클리핑 multi-code PW-CDMA 시스템을 위한 적응역확산수신기)

  • 최정민;이재홍
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.13-16
    • /
    • 2002
  • In this paper, we propose adaptive despreading receiver for multi-code PW-CDMA system with binary-level clipping. The distortion due to clipping the multi-level signal causes the performance degradation. Adaptive despreading alleviates the effect of clipping. It is shown that the proposed adaptive despreading receiver achieves smaller BER than conventional despreading receiver for multi-code PW-CDMA system with binary-level clipping.

  • PDF

A BLMS Adaptive Receiver for Direct-Sequence Code Division Multiple Access Systems

  • Hamouda Walaa;McLane Peter J.
    • Journal of Communications and Networks
    • /
    • v.7 no.3
    • /
    • pp.243-247
    • /
    • 2005
  • We propose an efficient block least-mean-square (BLMS) adaptive algorithm, in conjunction with error control coding, for direct-sequence code division multiple access (DS-CDMA) systems. The proposed adaptive receiver incorporates decision feedback detection and channel encoding in order to improve the performance of the standard LMS algorithm in convolutionally coded systems. The BLMS algorithm involves two modes of operation: (i) The training mode where an uncoded training sequence is used for initial filter tap-weights adaptation, and (ii) the decision-directed where the filter weights are adapted, using the BLMS algorithm, after decoding/encoding operation. It is shown that the proposed adaptive receiver structure is able to compensate for the signal-to­noise ratio (SNR) loss incurred due to the switching from uncoded training mode to coded decision-directed mode. Our results show that by using the proposed adaptive receiver (with decision feed­back block adaptation) one can achieve a much better performance than both the coded LMS with no decision feedback employed. The convergence behavior of the proposed BLMS receiver is simulated and compared to the standard LMS with and without channel coding. We also examine the steady-state bit-error rate (BER) performance of the proposed adaptive BLMS and standard LMS, both with convolutional coding, where we show that the former is more superior than the latter especially at large SNRs ($SNR\;\geq\;9\;dB$).

An Adaptive Receiver Using Reduced-state Sequence Detection for the Trellis-coded CPFSK (트렐리스 부호화된 CPFSK의 적응 수신기)

  • 송형규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.6
    • /
    • pp.746-760
    • /
    • 1998
  • In this paper, an adaptive RSSD(reduced-state sequence detection) receiver is proposed for the purpose of reducing the complexity and decision delay of the adaptive MLSD(maximum-likelihood sequence detection) receiver in the mobile satellite channel. The RSSD receiver reconstructs the trellis with a reduced number of states. The performance degradation due to the reduced states is compensated by modifying the branch metric calculation which uses the symbols in each path memory to estimate the residual ISI(intersymbol interference) terms. The structure of the proposed adaptive RSSD is a modified RSSD utilizing a per-survivor processing as well as the symbol-aided method and a channel estimation using the tentative data sequences. The complexity and performance of the proposed adaptive RSSD are controlled by the number of system states and ISI cancelers and the inserting period of the known symbols. In spite of a suboptimal alternative receiver compared to the adaptive MLSD receiver, the proposed adaptive RSSD receiver is able to reduce the complexity significantly and track the time-varying channel fast and reliably.

  • PDF

Adaptive Forward Error Correction Scheme for Real-Time Communication in Satellite IP Networks

  • Cho, Sung-Rae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1116-1132
    • /
    • 2010
  • In this paper, a new forward error correction (FEC) protocol is proposed for point-to-multipoint satellite links. Link-layer error control protocols in point-to-multipoint satellite links impose several problems such as unreliability and receiver-heterogeneity. To resolve the problem of heterogeneous error rates at different receivers, the proposed scheme exploits multiple multicast channels to which each receiver tunes. The more channels a receiver tunes to, the more powerful error correcting capability it achieves. Based on its own channel condition, each receiver tunes to as many channels as it needs, which prevents from receiving unwanted parities. Furthermore, each receiver saves the decoding time, processing overhead, and processing energy. Performance evaluation shows that the proposed scheme guarantees the target PER while saving energy. The proposed technique is highly adaptive to the channel variation with respect to the throughput efficiency, and provides scalable PER and throughput efficiency.

Analysis on Design Factors of the Optimal Adaptive Beamforming Algorithm for GNSS Anti-Jamming Receivers

  • Jang, Dong-Hoon;Kim, Hyeong-Pil;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.1
    • /
    • pp.19-29
    • /
    • 2019
  • This paper analyzes the design factors for GNSS anti-jamming receiver system in which the adaptive beamforming algorithm is applied in GNSS receiver system. The design analysis factors used in this paper are divided into three: antenna, beamforming algorithm, and operation environment. This paper analyzes the above three factors and presents numerical simulation results on antenna and beamforming algorithm.

An Adaptive Equalizer for High-Speed Receiver using a CDR-Assisted All-Digital Jitter Measurement

  • Kim, Jong-Hoon;Lim, Ji-Hoon;Kim, Byungsub;Sim, Jae-Yoon;Park, Hong-June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.155-167
    • /
    • 2015
  • An adaptive equalization scheme based on all-digital jitter measurement is proposed for a continuous time linear equalizer (CTLE) preceding a clock and data recovery (CDR) in a receiver circuit for high-speed serial interface. The optimum equalization coefficient of CTLE is determined during the initial training period based on the measured jitter. The proposed circuit finds automatically the optimum equalization coefficient for CTLE with 20", 30", 40" FR4 channel at the data rate of 5 Gbps. The chip area of the equalizer including the adaptive controller is 0.14 mm2 in a $0.13{\mu}m$ process. The equalizer consumes 12 mW at 1.2 V supply during the normal operation. The adaptive equalizer has been applied to a USB3.0 receiver.

A Study on Direct Decision Blind Adaptive Interference Suppression for DS-CDMA Systems (DS-CDMA 시스템을 위한 직접 결정 블라인드 적응 간섭 억제에 관한 연구)

  • 우대호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.10B
    • /
    • pp.1714-1721
    • /
    • 2000
  • In the mobile communication using DS-CDMA systems the problem of multiple user interference which reduce the performance is generated by multiple user access. In this paper to solve this problem we proposed the direct decision blind adaptive receiver with knowledge of only the desired user's spreading sequence. Simulation result present that the total user's power has equal gain The gain of signal to interference ratio for the proposed blind DD-LMS receiver has about 6[dB] than conventional receiver at additive white Gaussian noise and large gain at multipath channels. And when interference user's power has more large gain than desired user's power the gain of SIR for the proposed receiver has large value. And simulation result of bit error rate present that DD-LMS receiver has higher performance than LCCMA receiver. Thus the proposed blind DD-LMS receiver has robustness against interference of high power user and multipath channels.

  • PDF

A Study on Adaptive Signal Processing of Digital Receiver for Adaptive Antenna System (어댑티브 안테나 시스템용 디지털 수신기의 적응신호처리에 관한 연구)

  • 민경식;박철근;고지원;임경우;이경학;최재훈
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.44-48
    • /
    • 2002
  • This paper describes an adaptive signal processing of digital receiver with DDC(Digital Down Convertor), DDC is implemented by using NCO(Numerically Controlled Oscillator), digital low pass filter. for the passband sampling, we present the results of digital receiver simulation with DDC. We confirm that the low IP signal is converted to zero IF by DDC. DOA(Direction Of Arrival) estimation technique using MUSIC(Multiple SIgnal Classification) algorithm with high resolution is presented. We Cow that an accurate resolution of DOA depends on the input sampling number.

  • PDF

Blind adaptive receiver for uplink multiuser massive MIMO systems

  • Shin, Joonwoo;Seo, Bangwon
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.26-35
    • /
    • 2020
  • Herein, we consider uplink multiuser massive multiple-input multiple-output systems when multiple users transmit information symbols to a base station (BS) by applying simple space-time block coding (STBC). At the BS receiver, two detection filters for each user are used to detect the STBC information symbols. One of these filters is for odd-indexed symbols and the other for even-indexed symbols. Using constrained output variance metric minimization, we first derive a special relation between the closed-form optimal solutions for the two detection filters. Then, using the derived special relation, we propose a new blind adaptive algorithm for implementing the minimum output variance-based optimal filters. In the proposed adaptive algorithm, filter weight vectors are updated only in the region satisfying the special relation. Through a theoretical analysis of the convergence speed and a computer simulation, we demonstrate that the proposed scheme exhibits faster convergence speed and lower steady-state bit error rate than the conventional scheme.