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A BLMS Adaptive Receiver for Direct-Sequence Code
Division Multiple Access Systems |

Walaa Hamouda and Peter J. McLane

Abstract: We propose an efficient block least-mean-square (BLMS)
adaptive algorithm, in conjunction with error control coding, for
direct-sequence code division multiple access (DS-CDMA) systems.
The proposed adaptive receiver incorporates decision feedback de-
tection and channel encoding in order to improve the performance
of the standard LMS algorithm in convelutionally coded systems.
The BLMS algorithm involves two modes of operation: (i) The
training mode where an uncoded training sequence is used for
initial filter tap-weights adaptation, and (ii) the decision-directed
where the filter weights are adapted, using the BLMS algorithm,
after decoding/encoding operation. It is shown that the proposed
adaptive receiver structure is able to compensate for the signal-to-
noise ratio (SNR) loss incurred due to the switching from uncoded
training mode to coded decision-directed mode. Our results show
that by using the proposed adaptive receiver (with decision feed-
back block adaptation) one can achieve a much better performance
than both the coded LMS with no decision feedback employed. The
convergence behavior of the proposed BLMS receiver is simulated
and compared to the standard LMS with and without channel cod-
ing. We also examine the steady-state bit-error rate (BER) perfor-
mance of the proposed adaptive BLMS and standard LMS, both
with convolutional coding, where we show that the former is more
superior than the latter especially at large SNRs (SNR > 9 dB).

Index Terms: Adaptive filtering, block least-mean-square (BLMS)
adaptation, code division multiple access (CDMA), convolutional
coding, interference cancellation.

I. INTRODUCTION

The large capacity requirements of future wireless applica-
tions have created a great demand for more sophisticated re-
ceivers. With code division multiple access (CDMA) being
one of the dominant standards for these future wireless systems,
many multiuser receiver structures have been proposed to over-
come the inherent limitations of the second-generation matched-
filter receiver (see [1] for an excellent review on multiuser detec-
tion techniques). Even though most of these multiuser receivers
achieve optimum or near optimum performance, their applica-
tion is only limited to the reverse link of the wireless channel
where complexity is easily justified at the receiver base station.
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Furthermore, the majority of these multiuser receivers assume
complete information on all users’ parameters which in turn in-
creases the receiver complexity.

Motivated by the above, researchers have recently focused
on simple adaptive implementations of multiuser receivers (e.g.,
[2]-[4]). In this quest, adaptive minimum mean-square-error
(MMSE) implementations have received most of the atten-
tion [5]. This attention is mainly due to their great potential
to achieving a performance close to the multiuser-based re-
ceivers. Recent studies of adaptive MMSE receivers over both
flat and frequency-selective fading channels have been consid-
ered in [6]-[10]. Simply put, these adaptive MMSE receivers
are single-user detectors where only the desired user bit stream
is demodulated. In this case, the detection process is performed
on a bit-by-bit basis where a decision is made by observing one
bit interval of the received signal. Two practical realizations
of the adaptive MMSE receiver are the LMS algorithm and the
recursive-least-square (RLS) algorithm. In this paper, we only
consider the application of the LMS algorithm and its extension
to the block least-mean-square (BLMS) adaptation. Another
class of adaptive multiuser detectors is known as blind adaptive
detectors. The performance of these blind adaptive detectors
has been discussed for different channel models in [11]-[18]. In
these blind algorithms, the receiver does not require a training
sequence prior to data detection (i.e., the same as the conven-
tional matched filter). Even though most of these blind tech-
niques prove to be bandwidth efficient, they still require large
computational complexity relative to trained algorithms.

So far, most of the work on adaptive MMSE detection in
CDMA systems only focuses on the performance of uncoded
systems. Since error control coding is an integral part of any
communication system, one needs to investigate the perfor-
mance of these adaptive detection techniques in conjunction
with channel coding. Motivated by this, we introduce an adap-
tive forward-error-correction (FEC)-aided BLMS algorithm to
improve the performance of the standard LMS algorithm when
both systems employ convolutional coding. Our proposed re-
ceiver employs decision feedback from a concatenation of the
Viterbi decoder and a convolutional encoder to fine tune the fil-
ter tap-weights in a block LMS manner. It is important to men-
tion that, the receiver operation is the same as the standard LMS
algorithm during filter training where an uncoded training se-
quence is sent for initial filter tap-weights adaptation. Note that
the block implementation of the LMS used here stems from the

—fact that the decoder decisions are made at the end of every re-
ceived codeword and hence, the block size is a function of the
code rate used. Moreover, the proposed receiver structure can be
simply applied to systems that employ block codes as opposed
to convolutional coding.

The rest of the paper is organized as follows. In Section II,
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the discrete model for the DS-CDMA system is introduced. The
proposed-feedback-aided adaptive algorithm is discussed in Sec-
tion III. In Section IV, simulation results along with discussions
are given. Finally, conclusions are drawn in Section V.

II. SYSTEM MODEL

In what follows, we consider a synchronous DS-CDMA sys-
tem model [19], [20]. This model can be easily generalized to
the asynchronous model given the fact that any K-user asyn-
chronous system is equivalent to a synchronous one with 2K —1
users [10], [21]. Based on this model, user data is detected on a
bit-by-bit basis (i.e., single shot detection).

Starting at the transmitter side, each user signal is first en-
coded using a convolutional encoder followed by signal spread-
ing where the spreading waveform is given by

L

ck(t) =Y byl Pelt — iTe) (1)

i=1

where by [i] denotes the i-th chip of the k-th user code sequence
and P,(t) is the chip pulse waveform defined over the interval
[0, T,) with T, being the chip duration related to the bit duration
through the processing gain L = T'/T,. Using (1), the transmit-
ted signal for the k-th user can be written as

si(t) = V Exap(t)ex(t) cos(2m fot + 0) 2)

where Ej is the coded bit signal energy and is related to the
uncoded bit energy through Ey, = R.E, where R, = M/N is
code rate, ai(t) € {—1,+1} is the k-th user data bit, f. and
represent the carrier frequency and phase, respectively.

At the receiver side, the received multiuser signal is given in
the baseband form by A

K

r(t) = Z Erag(t)arck(t — 71) + n(t) (3)
k=1

where 7, is the channel delay associated with the k-th user sig-
nal (equal to zero for the synchronous case), n(t) is the Gaussian
noise with zero mean and variance 62 = N,,/2, and oy (t) is the
complex fading coefficient for user k. Without loss of general-
ity, in this paper, we consider an AWGN channel with no fad-
ing effects (i.e., o (¢)=1 for all k). Similar to the conventional
adaptive LMS algorithms, the proposed algorithm can still be
applicable in channels with multipath fading provided that the
fading variables are known at each user’s receiver. For details
on the performance of adaptive LMS algorithms in fading chan-
nels, the reader is referred to [3], [6].

As shown in Fig. 1, the adaptive receiver is modeled as a finite
impulse response (FIR) filter with a tap delay spaced at a multi-
ple of chip duration and total time span equal to the transmitted
bit duration. At the input of this adaptive filter, the received sig-
nal is sampled at the chip rate and the adaptation is performed
at the end of each uncoded bit duration.
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Fig. 1. Receiver structure.

ITII. BLMS ADAPTIVE RECEIVER STRUCTURE

In this section, we introduce the steps involved in the oper-
ation of the adaptive filter shown in Fig. 1. Starting with the
training mode, the receiver adapts its coefficients using the LMS
algorithm. After this initial adaptation, the receiver switches to
the decision directed mode where the BLMS algorithm is used
for filter tap-weights adaptation using blocks of re-encoded data.
In what follows, we discuss these two modes of operation in
more detail. The application of the BLMS introduced here can
be easily generalized to fading channels, provided that the chan-
nel coefficients of each user are perfectly known (i.e., estimated)
at the receiver side.

A. Training Mode and Adaptive LMS

Let w(n) be an L length coefficient vector representing the
adaptive filter weights' given by
we() ' @)

w(n) =[ wi(n) wa(n)

and let r(n) be an L vector representing the input chips during
one bit interval

r(n) =[ r(n)

where the subscript n denotes the discrete time index. Using (4)
and (5), the discrete output signal y(n) can be written as

r(n—1) rin—L+1) 17 (5

y(n) = w' (n)r(n). (©®)
Given the filter output y(n), the receiver forms an error signal
e(n) = d(n) - y(n) @)

where d(n) is the desired user filter output given by the uncoded
training sequence, and is equal to ay for the k-th user. Finally,
the LMS algorithm is used to adjust the filter weights according
to the recursion

w(n +1) = w(n) + 2ue(n)r(n) ®

where p is the adaptation step size chosen to optimize both
the convergence rate and the mean-squared error. It is impor-
tant to mention that during filter’s training, we assume that the

LIn the paper, vectors will be referred to by bold letters, while scalar quantities
will be referred to by italic letters.
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transmitted training sequence is uncoded and hence independent
from the error control code used in the decision-directed mode
where actual encoded data is sent.

B. Decision Directed Mode and Adaptive BLMS

Once the adaptive LMS reaches steady-state, the receiver
switches to the decision directed mode where actual encoded
data is used for filter tap-weights adaptation. As mentioned ear-
lier, this switching from uncoded training sequence to coded de-
cision directed mode results in a sudden increase in the achieved
MSE. To overcome this problem, we use the data estimates at the
Viterbi decoder output after encoding to generate an estimate of
the desired user’s coded data. This estimate is then used to fine
tune the filter tap-weights using the BLMS algorithm. It is worth
mentioning that, both the decoding and the subsequent encoding
operations at the receiver are performed on large data blocks.
Without loss of generality and for illustration purposes, we seg-
ment the encoder output into smaller blocks which are then fed
back to the BLMS algorithm for tap-weights adjustment.

In what follows, we describe the operation of the BLMS algo-
rithm. Starting with the gradient vector for each received code-
word of length N, the BLMS algorithm forms [22]

N-—1
vep =-2) e(nN +ir(nN +1i)
=0

®

where ep is gradient vector used to update the filter tap weights.
Now similar to the LMS algorithm, the block auto correlation
matrix R and the cross correlation vector P, are defined as fol-
lows

R = E["(n)r(n)] (10a)
P = FE [_T(n)a(n)] (10b)
where
r(n) = [ r(nN) r(nN +1) r(N+N-1) T
a(n) =[ a(nN) a(nN +1) a(nN+N-1) ¥

)

and E[] denotes statistical expectation. Then, the BLMS algo-
rithm adjusts the filter tap weights according to the recursion

w(n+1) = w(n) + 2ugr’ (n)e(n) (12)

where the definition of 45 is similar to the step size used for the
LMS algorithm. Given the filter tap weights, the filter output
can be represented as

y(n) =r(n)w(n) (13)
where
y(n) =[ y(nN) y(nN +1) y(nN+N—-1) |7
e(n) =[ e(nN) e(nN+1) e(nN+N -1) 7.

(14)

Now, let us examine the stability limits on the step size ug
to ensure steady-state convergence. For a fixed excess MSE

€escess and filter misadjustment 1, a common choice for the
LMS step size is given by [23]

Ui
N — 15
K trace[R) (15
for the conventional LMS, where R = E [rT(n)r(n)] is the
bit-wise auto correlation matrix and by

n

trace[R] (16)

Hp ™
for the BLMS algorithm where n = %<2, Now, assuming
that the BLMS inputs are stationary, it'is easy to show that
trace[R] = trace[R]. Hence for a fixed filter misadjustment for
both the uncoded and coded systems, the step size g should
be set equal to p. Note that this constraint is important since it
allows for a fair comparison between the conventional LMS and
the proposed BLMS algorithm. Having satisfied this condition,
both the LMS and the BLMS algorithms will converge to the
same MSE value.

IV. SIMULATION RESULTS

In this section, we present simulation results for the proposed
adaptive algorithm and discuss its convergence properties and
steady-state BER performance relative to the conventional LMS
adaptive algorithm with and without coding. The system param-
eters used in the simulations are as follows.

o We consider a DS-CDMA system with K = 8 users
and transmission based on binary-phase-shift-keyed (BPSK)
modulation.

o Each user data is encoded using a convolutional code of rate
R, = 1/2 and constraint length K = 7, and the decoder
used is based on the Viterbi algorithm with 3-bit soft deci-
sion decoding.

« The number of filter taps L = 31.

» Random code sequences are used throughout the simula-
tions.

« Finally, the ensemble average is taken over 30 independent
trials or else mentioned.

A. Convergence

Fig. 2 shows the transient behavior for the proposed BLMS
algorithm, with and without decisions feedback, along with the
performance of the conventional LMS operating in the training
mode. The results are shown for equal power users with signal-
to-noise ratio (SNR) of 10 dB. In these results, we use a train-
ing sequence of 100 symbols after which the proposed receiver
switches to the BLMS where decision feedback is used. For the
purpose of this study, the encoder (at the receiver side) operates
on large data frames (i.e., N = 500) which are then segmented
into smaller blocks and fed back to the BLMS for filter adap-
tation. Later, we study the effect of codeword length on the
receiver performance. In Figs. 2 and 3, we consider the case
where the block size is equal to two coded symbols and 32 sym-
bols, respectively. As seen from these results, the coded BLMS
is shown to suffer from a sudden MSE degradation when the re-
ceiver switches from training to decision directed mode.. On the
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Fig. 2. Convergence using 100-symbol training sequence for the FEC-
aided BLMS, the uncoded LMS, and the coded BLMS algorithms for
an 8-user DS-CDMA system and N = 2.
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Fig. 3. Convergence using 100-symbol training sequence for the FEC-
aided BLMS, the uncoded LMS, and the coded BLMS algorithms for
an 8-user DS-CDMA system N = 32.

other hand, the proposed FEC-aided BLMS is shown to offer
no loss in performance relative to the uncoded LMS algorithm.
The superior performance of the proposed FEC-aided BLMS al-
gorithm is simply due to the decision feedback algorithm used
to compensate for the SNR loss incurred during the decision di-
rected mode.

As a second investigation, we examine the convergence be-
havior of the proposed BLMS algorithm for different block
sizes. The results of this investigation are shown in Fig. 4 for
a fixed training period of 100 symbols. Also shown, as a bench
mark, is the convergence plot for the uncoded LMS algorithm
operating in the training mode only. As one can see, the perfor-
mance of the proposed BLMS algorithm is relatively insensitive
to the block size used in the adaptation process.

B. BER Performance

Given the superior convergence properties of the proposed
adaptive algorithm, it is of interest to examine its steady-state
performance in terms of the system BER. In Fig. 5, we present
simulation results for three scenarios: (i) The uncoded LMS al-

L
o] 100 200 300 400 500 600
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Fig. 4. Convergence behavior for different block sizes and using 100
symbols training sequence.
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Fig. 5. BER performance of the proposed BLMS algorithm compared
to the uncoded LMS and the coded LMS for an 8-user DS-CDMA
system.

gorithm, (ii) the coded LMS algorithm with no feedback ap-
plied, and (iii) our FEC-aided BLMS algorithm. In generating
these plots, we used a large training period of 1000 symbols
to ensure that steady-state has been reached before actual data
detection takes place. From these results, one can see that the
performance of all three systems is almost the same at relatively
medium SNRs and after which the proposed FEC-aided algo-
rithm starts to show a significant improvement relative to the
uncoded LMS algorithm. This behavior is expected since the
decoder estimates are not reliable enough for filter tap-weights
adaptation. Note that as the SNR increases, the re-encoded data
estimates become more reliable for filter adaptation and hence a
higher gain than the coded LMS algorithm is achieved.

V. CONCLUSIONS

In this paper, we considered the application of an FEC-aided
BLMS adaptive algorithm for DS-CDMA systems. We have
shown that the use of decision feedback in conjunction with
the BLMS algorithm can improve the performance of the coded
BLMS algorithm with no feedback applied. Compared with the
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uncoded standard LMS algorithm, the FEC-aided BLMS pro-
posed adaptive receiver converges to the same MSE value with
no loss incurred. Moreover, we examined the steady-state per-
formance of the proposed decision feedback adaptive receiver
and showed that it is superior than the standard LMS algorithm
when both employ the same channel code.
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