• 제목/요약/키워드: adaptive model

Search Result 2,837, Processing Time 0.027 seconds

T-S Fuzzy Model Based Indirect Adaptive Fuzzy Observer Design

  • Hyun Chang-Ho;Kim You-Keun;Kim Euntai;Park Mignon
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.348-353
    • /
    • 2004
  • This paper proposes an alternative observation scheme, T-S fuzzy model based indirect adaptive fuzzy observer. Nonlinear systems arc represented by fuzzy models since fuzzy logic systems arc universal approximators. In order to estimate the unmeasurable states of a given nonlinear system, T-S fuzzy modeling method is applied to get the dynamics of an observation system. T-S fuzzy system uses the linear combination of the input state variables and the modeling applications of them to various kinds of nonlinear systems can be found. The adaptive fuzzy scheme estimates the parameters comprising the fuzzy model representing the observation system. The proposed indirect adaptive fuzzy observer based on T-S fuzzy model can cope with not only unknown states but also unknown parameters. In the process of deriving adaptive law, the Lyapunov theory and Lipchitz condition are used. To show the performance of the proposed observation method, it is applied to an inverted pendulum on a cart.

  • PDF

A Fractional Integration Analysis on Daily FX Implied Volatility: Long Memory Feature and Structural Changes

  • Han, Young-Wook
    • Asia-Pacific Journal of Business
    • /
    • v.13 no.2
    • /
    • pp.23-37
    • /
    • 2022
  • Purpose - The purpose of this paper is to analyze the dynamic factors of the daily FX implied volatility based on the fractional integration methods focusing on long memory feature and structural changes. Design/methodology/approach - This paper uses the daily FX implied volatility data of the EUR-USD and the JPY-USD exchange rates. For the fractional integration analysis, this paper first applies the basic ARFIMA-FIGARCH model and the Local Whittle method to explore the long memory feature in the implied volatility series. Then, this paper employs the Adaptive-ARFIMA-Adaptive-FIGARCH model with a flexible Fourier form to allow for the structural changes with the long memory feature in the implied volatility series. Findings - This paper finds statistical evidence of the long memory feature in the first two moments of the implied volatility series. And, this paper shows that the structural changes appear to be an important factor and that neglecting the structural changes may lead to an upward bias in the long memory feature of the implied volatility series. Research implications or Originality - The implied volatility has widely been believed to be the market's best forecast regarding the future volatility in FX markets, and modeling the evolution of the implied volatility is quite important as it has clear implications for the behavior of the exchange rates in FX markets. The Adaptive-ARFIMA-Adaptive-FIGARCH model could be an excellent description for the FX implied volatility series

Backstepping Sliding Mode-based Model-free Control of Electro-hydraulic Systems

  • Truong, Hoai-Vu-Anh;Trinh, Hoai-An;Ahn, Kyoung-Kwan
    • Journal of Drive and Control
    • /
    • v.19 no.1
    • /
    • pp.51-61
    • /
    • 2022
  • This paper presents a model-free system based on a framework of a backstepping sliding mode control (BSMC) with a radial basis function neural network (RBFNN) and adaptive mechanism for electro-hydraulic systems (EHSs). First, an EHS mathematical model was dedicatedly derived to understand the system behavior. Based on the system structure, BSMC was employed to satisfy the output performance. Due to the highly nonlinear characteristics and the presence of parametric uncertainties, a model-free approximator based on an RBFNN was developed to compensate for the EHS dynamics, thus addressing the difficulty in the requirement of system information. Adaptive laws based on the actor-critic neural network (ACNN) were implemented to suppress the existing error in the approximation and satisfy system qualification. The stability of the closed-loop system was theoretically proven by the Lyapunov function. To evaluate the effectiveness of the proposed algorithm, proportional-integrated-derivative (PID) and improved PID with ACNN (ACPID), which are considered two complete model-free methods, and adaptive backstepping sliding mode control, considered an ideal model-based method with the same adaptive laws, were used as two benchmark control strategies in a comparative simulation. The simulated results validated the superiority of the proposed algorithm in achieving nearly the same performance as the ideal adaptive BSMC.

Design of Reconfigurable Flight Controller Using Discrete Model Reference Adaptive Scheme

  • Hyung, Seung-Yong;Kim, You-Dan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.79-86
    • /
    • 2007
  • In this paper, an adaptive control algorithm using system identification is proposed for an aircraft fault tolerant control system. A discrete state-space system is reformulated to be the ARX model which has the advantage in handing variable structure systems. Discrete model reference adaptive control is used to make the output of fault system follow the output of reference model. To validate the performance of the proposed control scheme, numerical simulations are performed for the high performance aircraft with control surface damage.

On-line Parameter Estimator Based on Takagi-Sugeno Fuzzy Models

  • Park, Chang-Woo;Hyun, Chang-Ho;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.481-486
    • /
    • 2002
  • In this paper, a new on-line parameter estimation methodology for the general continuous time Takagi-Sugeno(T-5) fuzzy model whose parameters are poorly known or uncertain is presented. An estimator with an appropriate adaptive law for updating the parameters is designed and analyzed based on the Lyapunov theory. The adaptive law is designed so that the estimation model follows the plant parameterized model. By the proposed estimator, the parameters of the T-S fuzzy model can be estimated by observing the behavior of the system and it can be a basis for the indirect adaptive fuzzy control. Based on the derived design method, the parameter estimation for controllable canonical T-S fuzzy model is also Presented.

An Application of Variable Structure Model Following Adaptive Control Using Time-Varying Sliding Regime to Robot Manipulator with Vertical 3 links (수직3관절 로보트 매니풀레이터에 대하여 시변슬라이딩레짐을 사용한 가변구조 모델추종 적응제어의 응용)

  • Kim, Joong-Wan;Kang, Dae-Gi;Kim, Byoung-Oh;Oh, Hyun-Seong;Jung, Hee-Kyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.158-167
    • /
    • 1994
  • The design concept of varaiable structure control is useful not only to stochasic systems but also to adaptive control systems. The Dynamic equation of vertical three linkage robot was derived. And it was simplyfied according to the scheme of control strategy. And we specify the form of model. Thereafter the error dynamic equation was derived between the real state of the plant and state of the model. Some simulations were performed to control robot manipulator applying the methodology of the variable structure model following adaptive control.

  • PDF

Development of Robust Adaptive Learning Control for Nonlinear System (비선형 시스템에 대한 강인성 적응 학습 제어기의 개발)

  • Yu, Yeong-Sun;Ha, Hwan-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.1895-1902
    • /
    • 2001
  • This paper gives an overview of the relationships between methods of loaming and adaptive control. It is the objective of this paper to develop adaptive learning control algorithms that combine the advantages of adaptive control with those of leaning control to the extent possible for the type of system model used. The robustness of this adaptive loaming control with respect to reinitialization errors and fluctuation of dynamics from disturbance is analyzed extensively. Simulation results have shown to verify the effectiveness of the proposed control algorithm.

Variable Structure Model Reference Adaptive Control, for SIMO Systems

  • mohammadi, Ardeshir Karami
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1987-1992
    • /
    • 2004
  • A Variable Structure Model Reference Adaptive Controller (VS-MRAC) using state Variables is proposed for single input multi output systems. . The structure of the switching functions is designed based on stability requirements, and global exponential stability is proved. Transient behavior is analyzed using sliding mode control and shows perfect model following at a finite time. The effect of input disturbances on stability and transients is investigated and shows preference to the conventional MRAC schemes with integral adaptation law. Sliding surfaces are independent of system parameters and therefore VS-MRAC is insensitive to system parameter variations. Simulation is presented to clear the theoretical results.

  • PDF

Robust Adaptive Control for the System with Unmodelled Dynamics (비모형화 특성을 갖는 시스템의 견고성 적응제어)

  • 김성덕;양해원
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.9
    • /
    • pp.670-677
    • /
    • 1987
  • The robustness and stability properties for a model reference adaptive control system with plant uncertainty are considered in this paper, using input-output stability theory. An error model for a typical adaptive control structure is extended to unmodelled dynamics in the plant model and then, the strictly positive real condition for global stability is examined. In general, since this condition can be easily violated due to unmodelled dynamics, a modified compensator which can be guaranteed Hev e SPR is introduced in the plant model and the effectiveness for the given structure is also given.

  • PDF

Critical Review on the Cluster Adaptive Cycle Model (클러스터 적응주기 모델에 대한 비판적 검토)

  • Jeon, Jihye;Lee, Chulwoo
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.189-213
    • /
    • 2017
  • This study seeks to critically examine the significance and limits of the cluster adaptive cycle model for analysis of cluster evolution and to propose research issues for future analysis of cluster evolution based on this critical examination. Until the 1980s, research on industrial complexes including clusters was based on a 'static perspective' that focuses on the aspect of economic space at a specific point in time, but the research paradigm has recently shifted to a 'dynamic perspective' focusing on 'evolution' of 'complex adaptive systems'. As a result, the adaptive cycle model has attracted attention as an analysis tool of dynamically evolving clusters. However, the cluster adaptive cycle model has emerged by being appropriately modified and expanded according to the properties of the cluster and its evolution. The cluster adaptive cycle model is a comprehensive analysis framework that identifies the characteristics of cluster evolution in terms of resource accumulation, interdependence, and resilience and classifies cluster evolution paths into six different categories. Nevertheless, there is still a need for further discussion and supplementation in terms of theoretical and empirical research to expand and deepen the model. Therefore, research issues for future analysis of cluster evolution are to specify and elaborate the cluster evolution model, to emphasize the concept of resilience, and to verify the applicability and usefulness of the model through empirical research.