• Title/Summary/Keyword: adaptive backstepping control

Search Result 103, Processing Time 0.022 seconds

Global Chaos Synchronization of WINDMI and Coullet Chaotic Systems using Adaptive Backstepping Control Design

  • Rasappan, Suresh;Vaidyanathan, Sundarapandian
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.2
    • /
    • pp.293-320
    • /
    • 2014
  • In this paper, global chaos synchronization is investigated for WINDMI (J. C. Sprott, 2003) and Coullet (P. Coullet et al, 1979) chaotic systems using adaptive backstepping control design based on recursive feedback control. Our theorems on synchronization for WINDMI and Coullet chaotic systems are established using Lyapunov stability theory. The adaptive backstepping control links the choice of Lyapunov function with the design of a controller and guarantees global stability performance of strict-feedback chaotic systems. The adaptive backstepping control maintains the parameter vector at a predetermined desired value. The adaptive backstepping control method is effective and convenient to synchronize and estimate the parameters of the chaotic systems. Mainly, this technique gives the flexibility to construct a control law and estimate the parameter values. Numerical simulations are also given to illustrate and validate the synchronization results derived in this paper.

Adaptive Backstepping Control of Induction Motors Using Neural Network (신경회로망을 이용한 유도전동기의 적응 백스테핑 제어)

  • Lee, Eun-Wook;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.452-455
    • /
    • 2003
  • Based on a field-oriented model of induction motor, adaptive backstepping approach using neural network(RBFN) is proposed for the control of induction motor in this paper. In order to achieve the speed regulation with the consideration of avoiding singularity and improving power efficiency, rotor angular speed and flux amplitude tracking objectives are formulated. rotor resistance uncertainty is compensated by adaptive backstepping and mechanical lumped uncertainty such as load torque disturbance, inertia moment, friction by RBFN. Simulation is provided to verify the effectiveness of the proposed approach.

  • PDF

Adaptive Backstepping Hovering Control for a Quadrotor with Unknown Parameters (미지 파라미터를 갖는 쿼드로터의 적응 백스테핑 호버링 제어)

  • Lee, Keun Uk;Park, Jin Bae;Choi, Yoon Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1002-1007
    • /
    • 2014
  • This paper deals with the adaptive backstepping hovering control for a quadrotor with model parameter uncertainties. In this paper, the backstepping based technique is utilized to design a nonlinear adaptive controller which can compensate for the motor thrust factor and the drag coefficient of a quadrotor. First, the quadrotor nonlinear dynamics is derived using Newton-Euler formulation. In particular, we use the ${\pi}/4$ shifted coordinate for x- and y-axis of a quadrotor. Second, an adaptive backstepping based attitude and altitude tracking control method is presented. The system stability and the convergence of tracking errors are proven using the Lyapunov stability theory. Finally, the simulation results are given to verify the effectiveness of the proposed control method.

Nonlinear Adaptive Flight Control Using Neural Networks and Backstepping (신경회로망 및 Backstepping 기법을 이용한 비선형 적응 비행제어)

  • Lee, Taeyoung;Kim, Youdan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1070-1078
    • /
    • 2000
  • A nonlinear adaptive flight control system is proposed using a backstepping controller with neural network controller. The backstepping controller is used to stabilize all state variables simultaneously without the two-timescale assumption that separates the fast dynamics, involving the angular rates of the aircraft, from the slow dynamics which includes angle of attack, sideslip angle, and bank angle. It is assumed that the aerodynamic coefficients include uncertainty, and an adaptive controller based on neural networks is used to compensate for the effect of the aerodynamic modeling error. It is shown by the Lyapunov stability theorem that the tracking errors and the weights of neural networks exponentially converge to a compact set. Finally, nonlinear six-degree-of-freedom simulation results for an F-16 aircraft model are presented to demonstrate the effectiveness of the proposed control law.

  • PDF

Adaptive Backstepping Control of Induction Motors with Uncertainties Using a Sliding Mode Adaptive flux Observer (슬라이딩모드 적응 자속관측기를 이용한 불확실성을 갖는 유도전동기의 적응 백스테핑제어)

  • 이은욱;양해원
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.3
    • /
    • pp.154-160
    • /
    • 2004
  • In this paper, a combined field orientation and adaptive backstepping approach using a sliding mode adaptive flux observer, is proposed for the control of induction motor In order to achieve the speed regulation with the consideration of improving power efficiency, rotor angular speed and flux amplitude tracking objectives are formulated. Rotor flux and inverse time constant are estimated by the sliding mode adaptive flux observer based on a fixed stator frame model and mechanical lumped uncertainty such as inertia moment, load torque disturbance, friction compensated by the adaptive backstepping based on a field-oriented model. Simulation results are provided to verify the effectiveness of the proposed approach.

Constrained Adaptive Backstepping Controller Design for Aircraft Landing in Wind Disturbance and Actuator Stuck

  • Yoon, Seung-Ho;Kim, You-Dan;Park, Sang-Hyuk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.1
    • /
    • pp.74-89
    • /
    • 2012
  • An adaptive backstepping controller is designed for the automatic landing of a fixed-wing aircraft. The backstepping control scheme is adopted by using the nonlinear six degree-of-freedom dynamics of the aircraft during the landing phase. The adaptive law is integrated along with the backstepping controller in order to estimate the aircraft modeling errors as well as the external disturbance. The dynamic constraints of the states and the actuator inputs are taken into account in the parameter adaptation. This is done to prevent an aggressive adaptation and to provide reliable control commands. Numerical simulations were performed to verify the performance of the proposed control law for the landing of the aircraft with the presence of gust and actuator stuck.

Design of an Adaptive Fuzzy Backstepping Controller for a Brush DC Motor Turning a Robotic Load (로봇부하 구동용 브러시 DC 모터의 적응 퍼지 백 스테핑 제어기 설계)

  • Kim, Young-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.92-101
    • /
    • 2006
  • In this paper a adaptive backstepping control scheme is proposed for control of a do motor driving a one-link manipulator. Fuzzy logic systems are used to approximate the unknown nonlinear function including the parametric uncertainty and disturbance throughout the entire electromechanical system. A compensation controller is also proposed to estimate the bound of approximation error. Thus the asymptotic stability of the closed-loop control system can be obtained. Numerical simulations are included to show the effectiveness of the proposed controller.

Design of an Adaptive Backstepping Speed Controller for Induction Motors with Uncertainties using Neural Networks (신경회로망을 이용한 불확실성을 갖는 유도전동기의 적응 백스테핑 속도제어기 설계)

  • Lee, Eun-Wook;Chung, Kee-Chull;Lee, Seung-Hak
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.11
    • /
    • pp.476-482
    • /
    • 2006
  • Based on a field-oriented model of induction motor, an adaptive backstepping control approach using neural networks is proposed in this paper for the speed control of induction motors with uncertainties at a minimum of information. Neural networks are used to approximate most of uncertainties which are derived from unknown motor parameters, load torque disturbances and unknown nonlinearities and an adaptive backstepping controller is used to derive adaptive law of neural networks and control input directly. The controller is implemented by the hardware using DSP and the effectiveness of the proposed approach is verified by carrying out the experiment.

Robust Adaptive Fuzzy Backstepping Control for Trajectory Tracking of an Electrically Driven Nonholonomic Mobile Robot with Uncertainties (불확실성을 가지는 전기 구동 논홀로노믹 이동 로봇의 궤적 추종을 위한 강인 적응 퍼지 백스테핑 제어)

  • Shin, Jin-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.10
    • /
    • pp.902-911
    • /
    • 2012
  • This paper proposes a robust adaptive fuzzy backstepping control scheme for trajectory tracking of an electrically driven nonholonomic mobile robot with uncertainties and actuator dynamics. A complete model of an electrically driven nonholonomic mobile robot described in this work includes all models of the uncertain robot kinematics with a nonholonomic constraint, the uncertain robot body dynamics with uncertain frictions and unmodeled disturbances, and the uncertain actuator dynamics with disturbances. The proposed control scheme uses the backstepping control approach through a kinematic controller and a robust adaptive fuzzy velocity tracking controller. The presented control scheme has a voltage control input with an auxiliary current control input rather than a torque control input. It has two FBFNs(Fuzzy Basis Function Networks) to approximate two unknown nonlinear robot dynamic functions and a robust adaptive control input with the proposed adaptive laws to overcome the uncertainties such as parameter uncertainties and external disturbances. The proposed control scheme does not a priori require the accurate knowledge of all parameters in the robot kinematics, robot dynamics and actuator dynamics. It can also alleviate the chattering of the control input. Using the Lyapunov stability theory, the stability of the closed-loop robot control system is guaranteed. Simulation results show the validity and robustness of the proposed control scheme.

Adaptive Backstepping Controller Design for a Permanent Magnet Synchronous Motor using Speed Observer (속도관측기를 활용한 영구자석동기전동기의 적응 백스테핑 제어기 설계)

  • 현근호;양해원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.5
    • /
    • pp.347-353
    • /
    • 2003
  • A nonlinear speed controller for a surface mounted permanent magnet synchronous motor (PMSM) based on a newly developed adaptive backstepping approach is presented To compensate parameter uncertainties and load torque disturbance, a nonlinear adaptive backstepping control law and adaptive law are derived systematically through virtual control input and suitable Lyapunov function. Also, speed observer without using costly speed sensor is presented. Simulation results show that the proposed controller can observe the speed and track the reference speed signal generated by a reference model.