• 제목/요약/키워드: active layer

검색결과 1,389건 처리시간 0.024초

적층 구조를 적용한 용액 공정 IGZO 박막 트랜지스터의 특성 분석

  • 김현기;최병덕
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.212.1-212.1
    • /
    • 2015
  • 본 연구에서는 용액 공정을 통해 제작한 IGZO 박막 트랜지스터의 Active layer를 적층 구조로 쌓아올리고, 신뢰성 평가를 위해 Gate에 지속적인 바이어스를 인가함으로써 소자의 문턱 전압 변화를 측정 실험을 진행하였다. Active layer 제작에 사용된 용액의 비율은 In:Zn:Ga = 1:1:30%로 제작되었고, 단일층부터 이중, 삼중층까지 적층을 하였다. 각 소자의 Active layer 층이 많아질수록 이동도가 1.21, 0.87, 0.69 ($cm^2/Vs$)으로 감소하는 등의 전기적 특성이 감소하는 경향을 보였다. 하지만 Gate에 10 V를 3000초간 지속적으로 인가해주었을 때 문턱 전압의 변화가 단일층일 때 10.4 V에서 삼중층일 때 1.3 V로 감소하였다. 이것은 Active layer의 층 사이의 계면이 형성되면서 current path에 영향을 주어 전기적 특성이 감소하였지만, 적층으로 인한 surface의 uniformity가 향상되는 것으로 확인하였다. 또한 1500초에서 Dit (Interface Trap Density)를 추출한 결과, 단일층에서는 $7.53{\times}10^{12}$($cm^{-2}-1$<)로 삼중층에서 $4.52{\times}10^{12}$($cm^{-2}-1$<)의 약 두 배 정도 높게 추출되었다.

  • PDF

Vibration Analysis of the Active Multi-Layer Beams by Using Spectrally Formulated Exact Natural Modes

  • Lee, Usik;Kim, Joohong;Andrew Y. T. Leung
    • Journal of Mechanical Science and Technology
    • /
    • 제15권2호
    • /
    • pp.199-209
    • /
    • 2001
  • Modal analysis method (MAM) is introduced for the fully coupled structural dynamic problems. In this paper, the beam with active constrained layered damping (ACLD) treatment is considered as a representative problem. The ACLD beam consists of a viscoelastic layer that is sandwiched between the base beam structure and an active piezoelectric layer. The exact damped natural modes are spectrally formulated from a set of fully coupled dynamic equations of motion. The orthogonality property of the exact damped natural modes is then derived in a closed form to complete the modal analysis method. The accuracy of the present MAM is evaluated through some illustrative examples: the dynamic characteristics obtained by the present MAM are compared with the results by spectral element method (SEM) and finite element method (FEM). It is numerically proved that MAM solutions become identical to the accurate SEM solutions as the number of exact natural used in MAM is increased.

  • PDF

능동구속감쇠 기법을 이용한 보의 진동제어 실험 (Experiment on Vibration Control of Beam Using Active Constrained-Layer Damping Treatment)

  • 강영규;최진영;김재환
    • 한국소음진동공학회논문집
    • /
    • 제11권4호
    • /
    • pp.52-57
    • /
    • 2001
  • The flexural vibration of aluminum beams with active and passive constrained-layer damping has been investigated experimentally to design a structure with maximum possible damping capacity. Piezoelectric film is used as a sensor and piezoceramic as an actuator for the negative velocity feedback control. The experimental results are compared with those by the finite element analysis. This paper shows the effectiveness of active constrained-layer damping treatment through experiments, and we have carried out an experiment to study the effect of beam thickness.

  • PDF

A Protective Layer on the Active Layer of Al-Zn-Sn-O Thin-Film Transistors for Transparent AMOLEDs

  • Cho, Doo-Hee;KoPark, Sang-Hee;Yang, Shin-Hyuk;Byun, Chun-Won;Cho, Kyoung-Ik;Ryu, Min-Ki;Chung, Sung-Mook;Cheong, Woo-Seok;Yoon, Sung-Min;Hwang, Chi-Sun
    • Journal of Information Display
    • /
    • 제10권4호
    • /
    • pp.137-142
    • /
    • 2009
  • Transparent top-gate Al-Zn-Sn-O (AZTO) thin-film transistors (TFTs) with an $Al_2O_3$ protective layer (PL) on an active layer were studied, and a transparent 2.5-inch QCIF+AMOLED (active-matrix organic light-emitting diode) display panel was fabricated using an AZTO TFT backplane. The AZTO active layers were deposited via RF magnetron sputtering at room temperature, and the PL was deposited via two different atomic-layer deposition (ALD) processes. The mobility and subthreshold slope were superior in the TFTs annealed in vacuum and with oxygen plasma PLs compared to the TFTs annealed in $O_2$ and with water vapor PLs, but the bias stability of the TFTs annealed in $O_2$ and with water vapor PLs was excellent.

Polymer/fullerene/LiF inter-layer BHJ 유기태양전지의 광학 및 전기적 특성에 대한 연구 (Electrical and optical characterizations of OSCs based on polymer/fullerene BHJ structures with LiF inter-layer)

  • 송윤석;김승주;류상욱
    • 반도체디스플레이기술학회지
    • /
    • 제10권1호
    • /
    • pp.27-32
    • /
    • 2011
  • In this study, we have investigated the power conversion efficiency of organic solar cells utilizing conjugated polymer/fullerene bulk-hetero junction(BHJ) device structures. We have fabricated poly(3-hexylthiophene)(P3HT), poly[2methoxy-5-(3',7'-dimethyloctyl-oxy)-1-4-phenylenevinylene] as an electron donor, [6,6]-phenyl $C_{61}$ butyric acid methylester(PCBM-$C_{61}$)as an electron acceptor, and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS) used as a hole injection layer(HIL), after fabricated active layer, between active layer and metal cathode(Al) deposited LiF interlayer(5 nm). The properties of fabricated organic solar cell(OSC) devices have been analyzed as a function of different thickness. The electrical characteristics of the fabricated devices were investigated by means J-V, fill factor(FF) and power conversion efficiency(PCE). We observed the highest PCEs of 0.628%(MDMO-PPV:PCBM-$C_{61}$) and 2.3%(P3HT:PCBM-$C_{61}$) with LiF inter-layer at the highest thick active layer, which is 1.3times better than the device without LiF inter-layer.

Low Reverse Saturation Current Density of Amorphous Silicon Solar Cell Due to Reduced Thickness of Active Layer

  • Iftiquar, S M;Yi, Junsin
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.939-942
    • /
    • 2016
  • One of the most important characteristic curves of a solar cell is its current density-voltage (J-V) curve under AM1.5G insolation. Solar cell can be considered as a semiconductor diode, so a diode equivalent model was used to estimate its parameters from the J-V curve by numerical simulation. Active layer plays an important role in operation of a solar cell. We investigated the effect thicknesses and defect densities (Nd) of the active layer on the J-V curve. When the active layer thickness was varied (for Nd = 8×1017 cm-3) from 800 nm to 100 nm, the reverse saturation current density (Jo) changed from 3.56×10-5 A/cm2 to 9.62×10-11 A/cm2 and its ideality factor (n) changed from 5.28 to 2.02. For a reduced defect density (Nd = 4×1015 cm-3), the n remained within 1.45≤n≤1.92 for the same thickness range. A small increase in shunt resistance and almost no change in series resistance were observed in these cells. The low reverse saturation current density (Jo = 9.62×10-11 A/cm2) and diode ideality factor (n = 2.02 or 1.45) were observed for amorphous silicon based solar cell with 100 nm thick active layer.

Electrochemical Effectiveness Factors for Butler-Volmer Reaction Kinetics in Active Electrode Layers of Solid Oxide Fuel Cells

  • Nam, Jin Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권4호
    • /
    • pp.344-355
    • /
    • 2017
  • In this study, a numerical approach is adopted to investigate the effectiveness factors for distributed electrochemical reactions in thin active reaction layers of solid oxide fuel cells (SOFCs), taking into account the Butler-Volmer reaction kinetics. The mathematical equations for the electrochemical reaction and charge conduction process were formulated by assuming that the active reaction layer has a small thickness, homogeneous microstructure, and high effective electronic conductivity. The effectiveness factor is defined as the ratio of the actual reaction rate (or equivalently, current generation rate) in the active reaction layer to the nominal reaction rate. From extensive numerical calculations, the effectiveness factors were obtained for various charge transfer coefficients of 0.3-0.8. These effectiveness data were then fitted to simple correlation equations, and the resulting correlation coefficients are presented along with estimated magnitude of error.

Effect of Channel Scaling on Zinc Oxide Thin-Film Transistor Prepared by Atomic Layer Deposition

  • Choi, Woon-Seop
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권6호
    • /
    • pp.253-256
    • /
    • 2010
  • Different active layer thicknesses for zinc oxide (ZnO) bottom-contact thin-film transistors (TFTs) were fabricated with a poly-4-vinyphenol polymeric dielectric using injector type atomic layer deposition. The properties of the ZnO TFTs were influenced by the active thickness and width-to-length (W/L) ratio of the device. The threshold voltage of ZnO TFTs shifted positively as the active layer thickness decreased, while the subthreshold slope decreased. The W/L ratio of ZnO TFTs also affected the mobility and subthreshold slope. An optimized TFT structure exhibited an on-tooff current ratio of above 106 with solid saturation.

능동 감쇠층을 이용한 아크형태 쉘 모델에 대한 진동특성 연구 (Vibration Control of Arc Type Shell using Active Constrained Layer Damping)

  • 고성현;박현철;박철휴;황운봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.1032-1038
    • /
    • 2002
  • The Active Constrained Layer Damping(ACLO) combines the simplicity and reliability of passive damping with the low weight and high efficiency of active control to attain high damping characteristics. The proposed ACLD treatment consists of a viscoelastic damping which is sandwiched between an active piezoelectric layer and a host structure. In this manner, the smart ACLD consists of a Passive Constrained Layer Damping(PCLD) which is augmented with an active control in response to the structural vibrations. The Arc type shell model is introduced to describe the interactions between the vibrating host structure, piezoelectric actuator and visco damping, The system is modeled by applying ARMAX model and changing a state-space form through the system identification method. An optimum control law for piezo actuator is obtain by LQR(Linear Quadratic Regulator) Method. The performance of ACLD system is determined and compared with PCLD in order to demonstrate the effectiveness of the ACLD treatment, Also, the actuation capability of a piezo actuator is examined experimentally by using various thickness of Viscoelastic Materials(VEM).

  • PDF

Structural Evolution and Electrical Properties of Highly Active Plasma Process on 4H-SiC

  • Kim, Dae-Kyoung;Cho, Mann-Ho
    • Applied Science and Convergence Technology
    • /
    • 제26권5호
    • /
    • pp.133-138
    • /
    • 2017
  • We investigated the interface defect engineering and reaction mechanism of reduced transition layer and nitride layer in the active plasma process on 4H-SiC by the plasma reaction with the rapid processing time at the room temperature. Through the combination of experiment and theoretical studies, we clearly observed that advanced active plasma process on 4H-SiC of oxidation and nitridation have improved electrical properties by the stable bond structure and decrease of the interfacial defects. In the plasma oxidation system, we showed that plasma oxide on SiC has enhanced electrical characteristics than the thermally oxidation and suppressed generation of the interface trap density. The decrease of the defect states in transition layer and stress induced leakage current (SILC) clearly showed that plasma process enhances quality of $SiO_2$ by the reduction of transition layer due to the controlled interstitial C atoms. And in another processes, the Plasma Nitridation (PN) system, we investigated the modification in bond structure in the nitride SiC surface by the rapid PN process. We observed that converted N reacted through spontaneous incorporation the SiC sub-surface, resulting in N atoms converted to C-site by the low bond energy. In particular, electrical properties exhibited that the generated trap states was suppressed with the nitrided layer. The results of active plasma oxidation and nitridation system suggest plasma processes on SiC of rapid and low temperature process, compare with the traditional gas annealing process with high temperature and long process time.