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Vibration Analysis of the Active Multi-Layer Beams by Using

Spectrally Formulated Exact Natural Modes

Joohong Kim, Usik Lee*
Department of Mechanical Engineering, Inha University
Andrew Y, T. Leung
Mechanical Engineering Division, Manchester University, UK

Modal analysis method (MAM) is introduced for the fully coupled structural dynamic
problems. In this paper, the beam with active constrained layered damping (ACLD) treatment
is considered as a representative problem. The ACLD beam consists of a viscoelastic layer that
is sandwiched between the base beam structure and an active piezoelectric layer. The exact
damped natural modes are spectrally formulated from a set of fully coupled dynamic equations
of motion. The orthogonality property of the exact damped natural modes is then derived in a
closed form to complete the modal analysis method. The accuracy of the present MAM is
evaluated through some illustrative examples: the dynamic characteristics obtained by the
present MAM are compared with the results by spectral element method (SEM} and finite
element method (FEM). It is numerically proved that MAM solutions become identical to the
accurate SEM solutions as the number of exact natural modes used in MAM is increased.
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1. Intreduction

During the last decade, piezoelectric materials
(simply, PZT) have received considerable atten-
tion due to their potential applications to the
aciive controls of structural vibration and noise.
The converse piezoelectric effect is used for the
actuator design while the direct piezoelectric
effect is used for the sensor design. In order to use
the piezoelectric effects, the PZT layers are usu-
ally bonded on the surfaces of base structures to
result in various active multi-layer laminate struc-
tures (Crawley and de Luis, 1987). This paper
will consider the elastic-VEM-PZT three-layer
beam that consists of the elastic base layer, the

* Corresponding Author,
E-mail : ulec@dragon.inha.ac.kr
TEL : +82-32-860-7318 ; FAX : +82-32-866-1434
Bepartment of Mechanical Engineering, Inha Univer-
sity, 253 Yonghyun-Dong, Nam-Ku, Inchon 402-751,
Korea. (Manuscript Received June 8, 2000; Revised
October 16, 2000)

viscoelastic material (simply, VEM) layer, and
the PZT layer. In the literature, this three-layered
beam is often called active constraining layer
damping treated beam or, simply, ACLD beam
(Baz, 1993).

There have been developed diverse structure
models for ACLD beams: the analytical models
(e.g., Baz, 1993; Liao, 1997), the finite element
models (e.g.. Robbins and Reddy, 1991; Lesicutre
and Lee, 1996), and the spectral element model
{Lee and Kim, 1999). Despite of numerous analyt-
ical models, some models are not appropriate for
practical uses. This is due to the strict assump-
tions used to derive extremely simplified models
or due to the mathematical complexity involved
in the analytical models. On the other hand, the
finite element method (FEM) has provided more
realistic structural models by removing unneces-
sary strict assumptions. However, as the draw-
back of FEM, very precise structural discretiza-
tion is often required to obtain reliable solutions,
especially at high frequency. Furthermore, the
modal analysis commonly used in conjunction
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with FEM is limited to the frequency regime
where the relative spacing of natural frequencies
remains large compared to the relative parameter
uncertainty. Thus, as an alternative to FEM, the
spectral element method (SEM) has been well
proved to overcome some drawbacks of FEM to
provide very accurate dynamic characteristics of
smart beams (Lee and Kim, 1999, 2000b).

The spectral element method (SEM) was
attributed to Doyle (Doyle, 1988) and was
applied to vartous wave propagations in struc-
tures (Doyle, 1997) and structural dynamics prob-
lems (e.g., Lee, 1998; Lee and Lee, 1999; Lee,
2000; Lee and Kim, 2000a; Lee and Kim, 2000b).
In contrast to the finite elements used in conven-
tional FEM, the spectrally formulated finite ele-
menis (simply spectral element) used in SEM treat
the mass distribution within a structural element
exactly by using exact eigenfunctions or shape
functions. Thus, SEM provides very accurate
dynamic characteristics of a structure and it is
often justifiably referred to as an exact method
(Banerjee, 1997). Thus, in the authors’ previous
work (Lee and Kim, 1999), a spectral element
model for ACLD beams has been developed
directly from fully coupled differential equations
of motion.

The modal analysis method (MAM) is very
popular in structural dynamics. In the literature,
Dokumaci (1987), Bishop er al. (1989}, Banerjee
(1989), and Banerjee er al. (1996) have conducted
modal analysis for the coupled differential equa-
tions of motion. The coupled differential equa-
tions of motion considered in their works are the
equations all can be combined into a single equa-
tion, which made it easy to apply the modal
analysis approach. However, it is not always
possible to reduce the fully coupled differential
equations of motion into a single eguation. Un-
fortunately, the fully coupled differential equa-
tions of motion of ACLD beams derived in Lee
and Kim (1999) cannot be reduced into a single
equation.

Thus, as the extension of the authors’ previous
work {Lee and Kim, 1999), this paper introduces
a modal analysis method for the uniform ACLD
beams. The appealing features of the present work

include the followings. (1} Exact natural modes
are spectrally formulated directly from the fully
coupled equations of motion. (2) The orth-
ogonality property of the spectrally formulated
exact natural modes is derived to complete the
present MAM. (3) The present MAM is verified
by comparing with both FEM and SEM solutions
of illustrative examples.

2. Coupled Dynamic Equations of
Motion

Consider an ACLD beam element of length [,
as shown in Fig. 1. The beam element consists of
a VEM layer that is sandwiched between a PZT
constraining layer and the base beam structure. In
Fig. 1, h,. h, and j, present the thicknesses of the
base beam, the VEM layer, and the PZT layer,
respectively, g is the flexural deflection of the
base beam, and ., #, and g, are the axial
displacements of the neutral axis of the base
beam, the VEM layer, and the PZT layer, respec-
tively. #=gw/dx is the rotational angle of the
base beam and ¥ is the shear angle of the VEM
layer. The subscripts b, p and p will be continu-
ously used in the following to represent the quan-
tities for the base beam, VEM layer, and PZT
layer, respectively.

A set of axial-bending-shear coupled dynamic
equations of motion for the three-layer beam has
been derived in the previous work by Lee and
Kim (1999)

Equations of Motion
ELaw™ + pAie+ aiis— Bu” — yit" + &1 §"
— e =plx. ¢)

‘r VISCOELASTIC LAYER

PIEZOELECTAIC LAYER

P _iw BASE LAYER
dx

> x
Fig. 1 The geometry and deformations of an ACLD
beam
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EAui— pAiio+oid’ — Bw™ —es¢p + 1¢p”
=zlx, #) (1
Eld”— ol § + 6160’ — &200™ — Exdip+ catt”
—AdGog)=rlx, 1)
Boundary Conditions
N=N ot yy=tts, M=M ot §=§ (2)
R=Rort $=¢, Q=Q or w=1
where prime () and dot { ') indicate the partial
derivatives with respect to the spatial coordinate
x and time ¢, respectively. p{x, #), r(x, ¢} and
»(x, t) represent the transverse force, axial force,
and the moment, respectively, all externally
applied along the beam. The material and geomet-
ric properties used in Eq. (1) are defined as
follows:

eA=pAst OpAvt 0pAp

oI = puly+ puAdi /44 0o Aph

a=poAuhn/2+ ppAsha/2,

B=EpAuin/2+ EpAph»/2

= 0olo ¥ A E 4+ 0pApkE/4

Ely=Eul.+ Eoly+ ChIL+ EpAphl®/4,

Els=Eulp+ Es A/ 4+ EpApky 3

EA=E.A,+E,Av+ EpAp.

Ep = Clbl - h%l/ﬁ:ﬂss

1= polot 0oAuvhobi/ 4+ 0o Aphoha/2,

g2=Euly+ EvAvhohn/ 4+ EsAphoha/2

3= PvAuhv/2+ ‘OpAph,m

ea=E,Auho/2+ EpAphe

h1 =hb+ hu; hz: f’lb +2h:}+ hp
where K, I, A, b, h and p(for each layer) are the
Young's modulus, area moment of inertia about
width,
thickness, and the mass density, respectively. Cf,
B35, and h,, are the elastic stiffness, the dielectric
constant, and the piezoelectric constant, respec-

the neutral axis, cross-sectional area,

tively.
In Eq. (2}, N, @, and M represent the axial
force, transverse shear force, and the bending
moment in the base beam, respectively, and R
represents the bending moment in the YEM layer.
They are related to the displacement fields as
N=FAu,— fw" +ef’
M=FELw"— fu,— ¢’
Q=—M +7ii'—ei ¢ +esd” (4}
R=FIls' — ea0” + eqre,

Similarly, N, §, M, and R in Eq. (2) represent

the boundary forces and moments which are
externally applied or piezoelectricity generated by
the driving voltage supplied to PZT layer.

The last term of Eq. (1) represents the viscoelas-
tic shear stress defined as (Christensen, 1982)

Gog=[' G- g (5

where (G(¢) is the relaxation function of VEM, i
e., the stress response to a unit-step strain input.
In frequency domain, Eq. {(5) can be expressed as
follows:

G*iw) ¥x: w) (6)

where (G*(iw) is the complex modulus and ¥ is
the spectral component of ¥ defined in Eq. (8}.

3. Spectrally Formulated Exact
Natural Modes

The natural modes and natural frequencies of a
structure can be formulated from its eigenvalue
problem. To formulate the eigenvalue problem,
consider the free vibration of an ACLD beam.

Elow™ + oA+ aiis—Bu™ — vit" + &1 ¢’

— &g =0
EAui — pAiiytoi' — B —esd +eagp”
=0 (N
El"—plg + &8 — sa™ — esidip+eaut”
—A(Gegp}=0

The general solutions of Eq. (7) can be
assumed in the spectral representations as

wix, t)=g1 Wilx)eivst
s =3 Uslx)eint @)
dlx. z‘)zé1 T lx)etws

where W,, U, and @ are the spectral components
of s, 1., and ¢, respectively, all corresponding to
the discrete frequency w,=2xs/T. § is the total
number of spectral components to be taken into
account in the spectral analysis. The time window
T is related to S by '

SzszYQT (9)

where fyyg is the Nyquest frequency in Hz. The
accuracy of time responses depends on how many
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spectral components are taken into account in the
analysis. For shorthand, the subscript s, which
indicates the spectral components of a quantity,
will be omitted in the following.

Substituting Eq. (8) intc Eq. (7) and removing
the common time-dependent factors gives three
coupled ordinary differential equations:

ELW™ — @*pAW =w*all’ — yW"

4+ TN+ RU e, T
EAU + & pAU=a (aW — ¥

+ BW” — g @ (10)
ELU" + el =0 e W — e U

‘e W —a U+ AC™¥

Let the general solutions of above equations be
W(x):élA;e"”‘
Ulx)= 3 Bie* (1)
V()= 3 Ce*

where L (=1, 2, ---, 8) are the wave numbers and
they are determined from the dispersion relation:

kB @kt ask'+ aukt 4 as=0 (12)

where

a=ELEIEl,—SEL, +28e26,— EAc}— ELLS
ar= &’ (— pIB*+ 2 Beies— yei+ pIEAEL,
—2FEle3e4—2EAg162+ 2 B85 2aerey
—pAS+eEAEL—2alElL+ pAELEL)
+iwAGC (W) EAEL— 5% (13)
as= W plELy— §EA +28ese1—2plaf—2ye1&
20818, — EEA+ pAplEL+2ae:65
—2pAe16:— P Efy+ pAELy) +ie® A,G¥w)
(yEA—208+ pAEL)+ w (pA&
—0AEAET,)
ay= *Qoees— by - pAel+ & pl +ypApl)
+ @' (2pAeses— pAIEA— oI*El,)
+i* A G M pAy — D) — i pAEAAGH w)
as= (A — pA®el) — i’ pA2ALGH w)

Eq. (12) gives eight values of f at a specified
frequency ¢, but they always appear as + pairs.
Thus, the general solutions of Eq. (9) can be
rewritten as

Wix)= g{Aie"fI+Az,e-*fX): [@(x)1{A}

Ulx)= il (Bic"* + Bue**)=[0(x)]{B) (14)
F(x)= gl(c.-e*'X+ Cre™ ") =[0()1{C}

where
[@(x)]:[eklx ekklx ekzx e—k;x eksx
e—kax ehx e—-lux]
{A}z{Al Az As A As As Aq AS}T (15)
{B}:{Bl Bz Ba B4 Bs Be B:r BS}T
{C}={C1 Cz Cg C.t Cs CG C7 CS}T

The complex modulus * can be represented
by using an appropriate VEM model such as the
GHM representation (McTavish and Hughes,
1993):

n 2 o

where s=ju is the Laplace variable and the
parameters x, g, ;E}, and @, are determined to
match the experimentally measured damping data
accurately. The accuracy of GHM model should
depend on how many dissipation variables (ie.,
the value of ») are used in the model. In this
paper, the GHM model with a single dissipation
variable (ie., #==1) will be considered for numer-
ical illustrations.

The relations between the coefficients { A}, {B),
and {C} can be derived. by substituting Eq. (14)
into Eq. (10), as

{B}=Idiagonal(2,)]{ A}
{CY=]diagonal(u)]{ A} (17)

where

Ai=(—1)[(Bea— El e ki -+ 0*(Bei— aea
— Elea— ve) kil + {oen— vesd ot
+ oA+ pAssw']/ A
wi={—DUEAEL— ki X EAY
+pAEL, —2a8) ki —{{&— yoA) o'
+pAEAQS K — pA%w*] /A (18)
A={{EAes— Bed b+ o (EAe + pAe— Pes
—ae) i+ o (pAe — ae)

The functions A{x} and g (x) indicate the degree
of coupling between three displacement fields.
Infinite or zero values of A{x) and g{x) simply
imply de-coupling.

By substituting Eqg. (17) into Eq. (14), the
general solutions can be expressed all in terms of
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Fig. 2 Spectral element of ACLD beam

coefficients {A} as follows:

Wix)=[@(x)]{A}
Ux)=[@(x)] [ diagonal(A1)1{4} (19
Y(x)=[@(x)] [diagonal (y;)]{ A}

The coefficients {A} can be determined from
boundary conditions. By using Eq. (19), the spec-
tral nodal DOFs (degrees of freedom) defined in
Fig. 2 can be expressed in terms of {4} as

{¥}=[P(w}]{4) (20

where

{¥}={lh Wi & W U W2 @ w21

The matrix [P] is frequency-dependent and is
given in Appendix. The coefficients {4} can be
eliminated from Eq. (19) by using Eq. (20). This
gives the general solutions in terms of the spectral
nodal DOFs as

W{xy=[00) ] Plw)] ¥} =[Nulx; @)]{¥}

Ulx)=[@(x)}] [ diagonal (A7 Y] [ P(w)] ¥}
={ N5 w){>} {22)

T(x)=[@(x)][diagonal (A7")] [ P(w)]{¥}
=[NW(X§ a))]{y}

where [N,]. [N,], and [N,] are the frequency
-dependent (dynamic) shape functions matrices.
They are considered to be exact because they are
so formulated that Eq. (22) satisfies both the
governing equations and the boundary conditions
at nodes exactly.

Substituting Eq. (22) into the force-displace-
ment relations of Eq. (4), the spectral nodal forces
and moments defined in Fig. 2 can be written in
terms of {4} as

{fiI=[Q(x)]{A4) (23)
where

{f}={N1 Q} M] ﬁ] Nz @2 Mz Ir?z}T (24)
In Eq. (24), N, O, M. and R(i=1, 2) are the
spectral nodal forces and moments defined in Fig.
2. The frequency-dependent matrix [Q] is

tabulated in Appendix.
From Egs. (20) and (23), the spectral nodal
force~displacement relation can be obtained as

=[] [ Ple)] {vl=[K()]){y} (25

where [K]=[Q][P]~" is the dynamic stiffness
matrix computed at each discrete frequency and,
in SEM, it is often called spectral element matrix.
Computer implementation to obtain the spectral
element matrix can be readily accomplished either
numerically or algebraically. To formulate the
spectral element matrix in an explicit form is often
tedious, but now it has become easy thanks to the
recent advances in symbolic computing (Wol-
fram, 1996). Since the explicit expression of [ K]
is too lengthy, it will not be listed herein. Apply-
ing boundary conditions into Eq. (25) gives the
system equation in the reduced form as

{(Fi=[K({) {5} (26)

The eigensolutions (ie., natural frequencies

and natural modes) are required to conduct the

modal analysis. To form an eigenvalue problem,

enforce all nodal forces to be zero. This may yield
an eigenvalue problem in the form

[K{a){3}={0} @n
The natural frequencies, w,{n=1, 2, ---, c0), can
be obtained numerically from the roots of the
determinant of [ £]. At each natural frequency,
+ili=1, 2, 3, 4) are
obtained from the dispersion relation of Eq. (12).
The eigenvector { ¥} corresponding to a natural
frequency can be computed by substituting the

eight wave-numbers

natural frequency into Eq. (27). Applying the
eigenvectors {#} and correspending wave-num-
bers k;, all computed at each natural frequency,
into Eq. (22) gives the natural modes. The natural
modes are considered exact in the sense that no
approximations have been considered in the for-
mulation procedure. One reminds that the natural
modes computed from Eq. (22} are the 'damped
natural modes’ into which the effects of viscoelas-
tic layer damping are already smeared in the
process of spectral formulation.



204 Joohong Kim, Usik Lee and Andrew Y. T. Leung

4. Orthogonality of Natural Modes

In the preceding section, the exact (damped)
natural modes are spectrally formulated. To com-
plete the modal analysis method for fully coupled
structural dynamics problems, the orthogonality
property of natural modes is derived in the fol-
lowing.

Since should satisfy its
eigenvalue problem, Eq. (10} can be written for
the »-th eigensolution as follows:

W (AW, +alUs— y Wi + e Tny=My
wa(0AUs— aWi+ & &)= —N; (28)
a)uz(pquﬁ‘&a U;zfé_,l W};)= 7R;1+Avc* w-n

where N,, Qn, M, and R, are the internal forces
and momenits computed from Eq. (4} at the y-th
natural frequency. On multiplying Eq. (30) by
W Ur, and ¥, in order, integrating the results
from x=0 to [, applying the integral by parts
yields, and summing up final forms of three

the eigensolution

equations yields

L
ol jo' {0AUnUn+ pA W Wi+ pI W,

—al Uy Wat UnWat— el W &+ W 8)
+ el UnWnt+ Un&ud + y W Witdx
- _NnUmll)L_ Qn WmIOL_Mn ‘VI;EI(";_RH q";n[(‘;‘

+ [ awidc+ [ NoUsdst [ Roadic
+AG [0 e (29)

For the g -th eigensolution, a similar procedure
may vield an equation that can be readily reduced
from Eq. (29) by replacing (s, ) with {3, m).
Subtract the equation for the g-th eigensolution
from that for the m-th eigensolution and then
apply the boundary conditions to obtain the
orthogonality property as follows:

L
£ (PAUnUn+ Wy W) + ol W W~ ol Un Wi,

+ UnWi) — el Wy W+ Wi W) 4+ (U ¥
+ UnW) + y W Wil dx = mn6nm {30)

where §,, is the Kronecker delta and 2, is the
#n-th modal mass defined by

L
n= fo {OA(U+ WD+ plEE—2aUn Wy

=2 Wi, + 26 U W+ TWr;Z}dx
(31)

5. Modal Equations

The forced vibration of an ACLD beam is
represented by Eq. (1). By using the orthogonality

property of the spectrally formulated exact

(damped) natural modes, the modal equations for
the ACLD beam will be derived in this section.

By superposing the natural modes, the forced
vibration responses can be assumed in the forms

wix. )= 3 Walx)galt)
ustx. =3 Unx)aa(t) (32)

¢x. )= i By(x)gul )

where W,, U, and ¥, are the #-th natural
modes. g,(#) are the modal coordinates and they
can be expressed in the spectral representation;

N
gnl r):gll G st (33)

where G,, are the spectral components of x-th
moedal coordinate. Substituting Eq. (33) into Eq.
(32) gives

o N
w(xa 1‘): 2 2 "VH(X) fr]-nseiw'sl
A=14=1
e N
Z{b(Xy t)zfzglsgl UR(XJ é‘nsem’s! (34)

ﬂ[’(x: t) :)é]sé] yfn(x) ans@iws"

Similarly, the external forces can be expressed
in the spectral representations as

P, =3 Falx)esor
f(x, D=F Flx)eios (35)

»(x, 1‘)=§l Pl x)gtost

where p;, s and 7, are the spectral compo-
nents.

Substituting Egs. (34) and (35) into Eq. (1) and
applying Eq. (4) yields the equations, for the s-th
spectral component, as

élM;t’fins_ (Ui}gl(pA Wn"_aUr’z— )’er
+ & w'r:) Tns= 55(3?)
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3 Nidns+ 02 (0AUn— aWit &) dns
= 7lx) (36)
SR AoG* B) Gt 0 2 (0l B & W
+esUn) Grs= 7olx)
On multiplying Eq. (36) by the s;-th natural
modes, W,, U, and ¥, in order, integrating the

results from x=0 to [, and taking a lengthy
manipulation may yield

oo L
= 3 (b= @ s | (0AWaWa— U W
L
+7W,§Wf§relW,{%)dx:£ 5olxt) Wndie
oo L
S (0h= ) e | (0AUnUn—alnlWs
L
+esUnWiddr= [ 2406 Unds (37
o L
3 (k= ) s f (oI, W &, WL
=1 0
+53Un%)dx=f 7o) Wacdi

Subtract the last two equations of (37) from the
first equation and apply the orthogonality prop-
erty of Eq. (30} into Eq. (39) to obtain
~ fns _ p
o ns™— mn(w%_wi) (S_]s 2: ,Ndnd
n=1, 2, -, o) (38)

where

—~ L
fns='/0‘ {ﬁs(x) an fs(X)Unf ?s(x) w‘n}dx
(39

Substituting spectral components ., into Eq.
(33) gives the modal coordinates in the time
domain. This computation can be accomplished
efficiently by use of [FFT algorithm.

By using Eqs. (33) and (35), Eq. (38) can be
transformed into the modal equations in the time
domain as

i)+ ahan( =L (40)

where ¢, is the #-th natural frequency and f£,(¢)
is the corresponding modal force defined by
L
Sl0= [ ox. DWa— e DU,
—rix, )W} dx (4D

One reminds that, because the effects of viscoelas-

tic layer damping are already smeared into the
(damped) natural modes, Eq. {(41) does not con-
tain the first-order derivative term.

6. Numerical Illustrations

In this paper, a cantilevered uniform ACLD
(three-layer) beam is considered for numerical
illustrations. The base beam is fulty covered with
VEM layer from the fixed root to the free end,
and the VEM layer is also fully covered fully with
PZT layer. The VEM layer is represented by one
-term GHM model. The ACLD beam has the
length of [.=261.6 smm. The base beam, VEM
layer, and PZT layer all have the same width of
12.7 mm. The geometry and matetial properties
of the base beam are : thickness %,=2.86 num,
Young’s modulus F£,=71 (GPg, and mass density
0 =2700 fg/m® The PZT layer has the thick-
ness f,=0.762 smm. Young's modulus E,=64.9
(;Pa, elastic stiffness Cfi=74 GPga, piezoelectric
constant gy = —175x 10712 4/ V, and mass den-
sity p,=7600 fg/m’ The VEM layer is made of
3M ISD 112, and it has the thickness %,=0.25
mm, and mass density o,=1250 kg/m’.

First, to confirm the accuracy of the present
spectral element formulation, Table 1 and Fig. 3
compare the frequency response functions (FRF)
and natural frequencies of the ACLD beam
obtained by SEM and FEM, respectively. For
SEM, the FRF are obtained from Eq. (26) and

Table I Comparison of the natural frequencies of a
uniform ACLD beam
obtained by using spectral element method
(SEM) and conventional finite element
method (FEM) (x=total number of finite
elements used in the analysis)

cantilevered

Mode wrem(H2) Wekn
n=10 | =20 | »=30 (Hz)
I st 28.3 283 283 283
2 nd 162.2 161.4 161.2 161.2
3rd 429.5 4250 423.8 423.5 .
4 th 803.2 783.8 781.1 7802
5th 1306.8 1256.6 12433 1240.8
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the natural frequencies from Eq. (27). Since the
ACLD beam is uniform, a single spectral element
is enough to get exact solutions, which has been
well proved in previous works (Doyle, 1997,
Banerjee ef al., 1996). To obtain the FRF in Fig.
3, the ACLD beam is excited by applying a point
load on its free end. Figure 3 shows that, as we
increase the total number of finite elements used
in FEM, the finite element solutions indeed con-
verge to the FRF obtained by SEM. Similarly,
Table 1
obtained by FEM also converge to those obtained
by SEM as the tota!l number of finite elements in
FEM is increased. These observations may prove

shows that the natural [requencies

the accuracy and validity of the present spectral
element formulation. Thus, the solutions obtained
by SEM can be considered exact and they will be
used as the reference to evaluate the accuracy and

10 T T

—-— SEM ( 1 spectral element)
— -~ FEM ( 5 finite elements)
— FEM (10 finite elements)

%‘.g' L - FEM (15 finite e} )

=

3

2

£

3

4

u

=

Eal

:

g

1000

0 200 400 600 800
Frequency {Hz)

Fig. 3 Comparison of the frequency response func-
tions of an ACLD beam obtained by spectral
element method {(SEM) and conventional
finite element method (FEM)
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validity of the present MAM.

Tables 2 and 3 show the natural frequencies
and modal dampings of the ACLD beam comput-
ed from Egq. (27) with varying the thickness of
VEM layer. As the thickness of VEM layer is
gradually decreased to zero, in general, the natu-
ral frequencies of the ACLD beam are found to
be gradually increased and they converge to the
values for the two-layer active beam considered
by Lee and Kum (2000b). Table 3 also shows, as
expected, that the modal damping converges to
zero values as the VEM thickness is reduced to
zero.

Figure 4 shows the solution accuracy of the
present MAM, depending on how many normal
modes are used in the analysis. The FRF
obtained by MAM are compared with accurate
SEM solutions. The FRF by MAM are given by

%Wn(x=L)c}‘m/ Fslx=1L) from Egs. (34) and

(35), where N is the number of normal modes
used in MAM. As expected, the FRF obtained by
MAM converge to the exact one as we increase

Table 3 Viscoelastic-layer thickness dependence of
modal damping for a cantilevered uniform

ACLD beam
Mode Etnree—Layer
he=0.25 mm | ,=0.025 pom | b, =0.0025 mm

I st 0.0559 0.0114 0.0014

2 nd 0.0776 0.1321 0.0431
3d 0.0395 0.0171 0.0025

4 th 0.0191 0.0131 0.0022

5 th 0.0095 0.0099 0.0021

Table 2 Viscoelastic-layer thickness dependence of natural frequency for a cantilevered uniform ACLD beam

Mode @ nroe -Laver (HZ) @rwo-taver(HZ)
hy=0.25 mm hy=0025 mm h,=0.0025 mm (Lee & Kim, 2000b)
l st 28.34 29.75 30.01 30.04
2 nd 16l.16 166.41 171.75 [88.22
3rd 423.52 497.69 523.14 526.89
4 th 780.23 938.50 1018.45 1031.13
5th 1240.79 1492.23 1669.98 1705.41
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Fig. 4 Comparison of the frequency response fune-

tions of an ACLD beam obtained by spectral

element method {SEM) and modal analysis

method (MAM)
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Fig. 5 Accuracy of the dynamic responses of an
ACLD beam obtained by modal analysis
method (MAM), when compared with the
result obtained by spectral e¢lement method
{SEM)

the toral number of exact natural modes consid-
ered in MAM. Figure § shows the accuracy of the
dynamic responses predicted by MAM, depend-
ing on the total number of exact natural modes
considered in MAM. The dynamic response in the
time domain can be characterized by its peak-
amplitudes and peak-times at which the peak-
amplitudes occur. Thus, to evaluate the accuracy
of the dynamic responses obtained by MAM
{with respect to the exact solution by SEM), two
errors are defined herein. The first one is the

averaged absolute peak-amplitude error, which is
obtained by averaging the differences of the abso-
Jute peak-amplitudes obtained by MAM and
SEM. The second one is the averaged peak-time
error, which is obtained by averaging the differ-
ences of the peak-times obtained by MAM and
SEM. To compute the time-averaged errors
shown in Fig. 3, the first fifteen peaks of dynamic
response are considered. As we include more
exact natural modes for the modal analysis, Fig. 5
shows that both averaged errors become smaller.

Equation (40) shows that the accuracy of the
vibration amplitude strongly depends on the
accuracy of the modal mass computed from Eq.
{31). However, the computation error is inevi-
table due to the numerical integration required to
compute the modai mass. This is the main reason
why the averaged absolute peak-amplitude error
still keeps its value about [.7% though we con-
sider more than four exact natural modes in the
modal analysis, while the averaged peak-time
error almost disappears, Thus, improving the
accuracy of the modal mass may further improve
the solution accuracy of the present MAM, which
is based on spectrally formulated exact natural
modes.

7. Conclusions

This paper introduces a modal analysis method
for ACLD beams. The exact natural modes are
spectrally formulated by using the exact wave
solutions of a set of fully coupled equations of
motion. To complete the modal analysis method,
the orthogonality of the spectrally formulated
exact natural modes is derived. By using the
orthogonatity of natural modes, the modal equa-
tions for the forced vibration are derived. A
cantilevered uniform ACLD beam is considered
as an example problem to evaluate the modal
analysis method introduced in this paper. First it
is observed that the finite element solutions
indeed converge to the SEM solutions as the
number of finite elements used in FEM is in-
creased, which may prove the accuracy of SEM.
The accuracy of the present MAM is then evaluat-
ed by comparing the MAM solutions with the
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accurate SEM solutions. It is numerically shown
that the present MAM provides very accurate
solutions, which is thanks to the use of spectrally
formulated exact natural modes and modal
masses.
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Appendix

The matrices [P] and [ Q]
(23) are defined as follows:

in Egs. (20) and

Al =4 Az — A2 Aa
1 1 1 1 |
!1,'1 —kl kz _kz ks
[P] | # —H He — Lz 1
- er.kl/h _ e’“"‘/h eLszZ _e—Lkzﬂz eucg/la
e.l'.k] e—Lkl eLkz e—l’,kz eLks
gt —gTthf pthap, — bk, plbsk,
_eLklﬂl _eth#l eLch#z ‘Q—Lkzﬂz elkaﬂa
_/13 /14 —/14 -|
1 I 1
— i ks — ks
—H Ha i
—e 7t gett ), —e A, (Al
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Ql= —e¥ipy —e ™y —e
—eHipy e THpy —epy
—eip —eHpy —eM iy,
| — e™pn —e Hpy —e™pp

iz b3 P

bz — P D

Paz b3 Pa

P b3 bu
_eLksp[:'} . e—Lkspls — e[.klp14
—eMep o Hap, ol
—ethapy, — g Mep — gLk
—_ eLksp43 _ e‘*Lfcsp‘tS — ef.k‘p44

where
pi=— kil EAA— Bki+ sut)
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and A; and g, are given Eq. (18).
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