Browse > Article
http://dx.doi.org/10.5229/JECST.2017.8.4.344

Electrochemical Effectiveness Factors for Butler-Volmer Reaction Kinetics in Active Electrode Layers of Solid Oxide Fuel Cells  

Nam, Jin Hyun (School of Mechanical Engineering, Daegu University)
Publication Information
Journal of Electrochemical Science and Technology / v.8, no.4, 2017 , pp. 344-355 More about this Journal
Abstract
In this study, a numerical approach is adopted to investigate the effectiveness factors for distributed electrochemical reactions in thin active reaction layers of solid oxide fuel cells (SOFCs), taking into account the Butler-Volmer reaction kinetics. The mathematical equations for the electrochemical reaction and charge conduction process were formulated by assuming that the active reaction layer has a small thickness, homogeneous microstructure, and high effective electronic conductivity. The effectiveness factor is defined as the ratio of the actual reaction rate (or equivalently, current generation rate) in the active reaction layer to the nominal reaction rate. From extensive numerical calculations, the effectiveness factors were obtained for various charge transfer coefficients of 0.3-0.8. These effectiveness data were then fitted to simple correlation equations, and the resulting correlation coefficients are presented along with estimated magnitude of error.
Keywords
Solid oxide fuel cell; Electrochemical effectiveness factor; Butler-Volmer reaction kinetics; Active reaction layer; Current generation performance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Larminie, A. Dicks, M. S. McDonald, Fuel Cell Systems Explained, 2nd Ed., John Wiley & Sons, Chichester, 2003.
2 R. O'Hayre, S. W. Cha, W. Colella, F. B. Prinz, Fuel Cell Fundamentals, 2nd Ed., John Wiley & Sons, New York, 2009.
3 J. P. P. Huijsmans, F. P. F. Van Berkel, G. M. Christie, J. Power Sources, 1998, 71(1), 107-110.   DOI
4 D. J. Brett, A. Atkinson, N. P. Brandon, S. J. Skinner, Chem. Soc. Rev., 2008, 37(8), 1568-1578.   DOI
5 E. D. Wachsman, K. T. Lee, Science, 2011, 334, 935-939.   DOI
6 E. Maguire, B. Gharbage, F. M. B. Marques, J. A. Labrincha, Solid State Ionics, 2000, 127(3), 329-335.   DOI
7 T. Ishihara, J. Yan, M. Shinagawa, H. Matsumoto, Electrochim. Acta, 2006, 52(4), 1645-1650.   DOI
8 C. Fu, K. Sun, N. Zhang, X. Chen, D. Zhou, Electrochim. Acta, 2007, 52(13), 4589-4594.   DOI
9 P. Holtappels, C. Bagger, J. Eur. Ceram. Soc., 2002, 22(1), 41-48.   DOI
10 F. Zhao, A. V. Virkar, J. Power Sources, 2005, 141(1), 79-95.   DOI
11 V. A. C. Haanappel, J. Mertens, D. Rutenbeck, C. Tropartz, W. Herzhof, D. Sebold, F. Tietz, J. Power Sources, 2005, 141(2), 216-226.   DOI
12 D. H. Jeon, J. H. Nam, C. J. Kim, J. Electrochem. Soc., 2006, 153(2), A406-A417.   DOI
13 M. Ni, M. K. Leung, D. Y. Leung, J. Power Sources, 2007, 168(2), 369-378.   DOI
14 Z. Wang, N. Zhang, J. Qiao, K. Sun, P. Xu, Electrochem. Commun., 2009, 11(6), 1120-1123.   DOI
15 Y. Chen, J. Bunch, T. Li, Z. Mao, F. Chen, J. Power Sources, 2012, 213, 93-99.   DOI
16 H. Iwai, et al, J. Power Sources, 2010, 195(4), 955-961.   DOI
17 J. R. Wilson, J. S. Cronin, S. A. Barnett, Scripta Mater., 2011, 65(2), 67-72.   DOI
18 J. S. Cronin, Y. K. Chen-Wiegart, J. Wang, S. A. Barnett, J. Power Sources, 2013, 233, 174-179.   DOI
19 P. Costamagna, P. Costa, E. Arato, Electrochim. Acta, 1998, 43(3), 375-394.   DOI
20 P. Costamagna, P. Costa, E. Arato, Electrochim. Acta, 1998, 43(8), 967-972.   DOI
21 D. Shin, J. H. Nam, Electrochim. Acta, 2015, 171, 1-6.   DOI
22 D. Shin, S. M. Baek, J. H. Nam, C. J. Kim, Comp. Chem. Eng., 2016, 90, 268-277.   DOI
23 S. M. Baek, D. Shin, S. Sohn, J. H. Nam, Fuel Cells, 2016, 16(5), 591-599.   DOI
24 J. H. Nam, Electrochim. Acta, 2016, 221, 8-13.   DOI
25 A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, John Wiley & Sons, New York, 2001.
26 A. Utz, H. Störmer, A. Leonide, A. Weber, E. IversTiffee, J. Electrochem. Soc., 2010, 157(6), B920-B930.   DOI
27 J. Mizusaki, et al, Solid State Ionics, 1994, 70-71, 52-58.   DOI
28 B. de Boer, M. Gonzalez, H. J. M. Bouwmeester, H. Verweij, Solid State Ionics, 2000, 127(3), 269-276.   DOI
29 P. Holtappels, L. G. J. de Haart, U. Stimming, J. Electrochem. Soc., 1999, 146(5), 1620-1625.   DOI
30 S. A. Klein, F. L. Alvarado, Engineering Equation Solver, F-Chart Software, Madison, 2002.