• Title/Summary/Keyword: activated carbons

Search Result 293, Processing Time 0.025 seconds

NO Reduction Mechanism of Electrolytically Cu-plated Activated Carbon Fibers (전해 구리도금된 활성탄소섬유의 NO 환원반응 메카니즘)

  • 신준식;박수진;김학용;이덕래
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.309-310
    • /
    • 2003
  • 활성탄소 (activated carbons, ACs)는 넓은 비표면적을 가지고 있어 흡착용량이 크며, 발달된 미세공을 가지고 있기 때문에 오염물질의 제거능력이 높을 뿐만 아니라 경제적, 환경 친화적인 측면에서도 유리하다. 특히 섬유화된 할성탄소섬유 (activated carbon fibers, ACFs)는 균일한 세공이 표면에 노출되어 있어 흡착속도가 빠르며, 안정성과 재생성이 좋고 섬유상이기 때문에 가공이 용이하며 직포, 부직포, 시트 등의 형태로 만들어져 용매회수, 공업제품의 정제, 오폐수의 처리시설, 소각시설의 유해 배기가스의 흡착등에 널리 사용되고 있다.[1,2] (중략)

  • PDF

Synthesis of Activated Carbon from Rice Husk Using Microwave Heating Induced KOH Activation

  • Nguyen, Tuan Dung;Moon, Jung-In;Song, Jeong-Hwan;Kim, Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.321-327
    • /
    • 2012
  • The production of functional activated carbon materials starting from inexpensive natural precursors using environmentally friendly and economically effective processes has attracted much attention in the areas of material science and technology. In particular, the use of plant biomass to produce functional carbonaceous materials has attracted a great deal of attention in various aspects. In this study the preparation of activated carbon has been attempted from rice husks via a chemical activation-assisted microwave system. The rice husks were milled via attrition milling with aluminum balls, and then carbonized under purified $N_2$. The operational parameters including the activation agents, chemical impregnation weight ratio of the calcined rice husk to KOH (1:1, 1:2 and 1:4), microwave power heating within irradiation time (3-5 min), and the second activation process on the adsorption capability were investigated. Experimental results were investigated using XRD, FT-IR, and SEM. It was found that the BET surface area of activated carbons irrespective of the activation agent resulted in surface area. The activated carbons prepared by microwave heating with an activation process have higher surface area and larger average pore size than those prepared by activation without microwave heating when the ratio with KOH solution was the same. The activation time using microwave heating and the chemical impregnation ratio with KOH solution were varied to determine the optimal method for obtaining high surface area activated carbon (1505 $m^2$/g).

$CO_2$ Adsorption Behaviors of Activated Carbons Modified by Chelating Groups (킬레이트 관능기가 도입된 활성탄소의 이산화탄소 흡착거동)

  • Jang, Dong-Il;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.396-400
    • /
    • 2010
  • In this work, the adsorption behaviors of activated carbons (ACs) containing chelating functional groups were studied in $CO_2$ removal. The ACs were modified by pyrolysis of peroxide and glycidyl methacrylate graft polymerization in order to induce chelating functional groups, such as diethylenetriamine groups on the AC surfaces. The surface functional groups of the ACs were characterized by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The textural properties of the ACs were analyzed by $N_2$/77 K isotherms. Adsorption behaviors of the ACs were observed in the amounts of $CO_2$ adsorption. From the results, we found that the chelating functional groups on the AC surfaces led to enhance selectivity and chemisorption on $CO_2$ adsorption in spite of decreasing the physical adsorption properties.

Effect of Graphite Nanofibers Addition on the Electrochemical Behaviors of Platinum Nanoparticles Deposited on Activated Carbons (활성탄소에 담지된 백금나노입자의 전기화학적 거동에 대한 그라파이트 나노섬유 첨가효과)

  • Jo, Wonbin;Oh, Misoon;Kim, Juhyun;Kim, Seok
    • Korean Chemical Engineering Research
    • /
    • v.48 no.6
    • /
    • pp.673-678
    • /
    • 2010
  • In the present study, mixed carbon-supported platinum(Pt) nanoparticles were prepared by a chemical reduction method of Pt precursor solution on two types of carbon materials such as activated carbons(ACs) and graphite nanofibers(GNFs). Average crystalline sizes and loading levels of Pt metal particles could be controlled by changing a content of GNFs. The highest electroactivity for methanol oxidation was obtained by preparing the carbon supports having 15 wt% GNFs. Furthermore, with an increase of GNFs content from 0% to 15%, an electrical conductivity was changed from $10^{-4}S/cm$ to $10^{-1}S/cm$. By an introduction of 10 wt% GNFs additive, the electroactivity of platinum particles was enhanced, but was saturated in the case of 15 wt% GNFs contents. This was related with the fact that the electroactivity change was dependent on the electrical conductivity of mixed carbon supports and Pt particle deposition content or deposition morphology.

The Molecular Simulation Study for the Adsorption of $H_2S,\;NH_3$ and $CH_3SH$ on Graphite Carbon (Graphite Carbon에 $H_2S,\;NH_3$$CH_3SH$의 흡착에 대한 분자모사 연구)

  • 신창호;김종열;이영택;김정열;김승준
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.25 no.1
    • /
    • pp.59-69
    • /
    • 2003
  • The adsorption characteristics of H$_2$S, NH$_3$and $CH_3$SH on the graphite carbon have been investigated using Grand Canonical Monte Carlo(GCMC) method with universal force field (UFF) and dreiding force field. Most of the activated carbons used in vapor phase adsorption have the micropore of 6$\AA$ to 20$\AA$ and the specific surface area of ca. 1000 m$^2$/g, as the result of $N_2$ adsorption by BET method. For the more efficient comparison, the activated carbons have been manipulated with different pore sizes. The adsorption characteristics of H$_2$S, NH$_3$and $CH_3$SH have been considered at various temperatures and pressures. The adsorption amount using Dreiding force field is predicted to be lower than that using UFF. As the temperature is going to high, the adsorption amount of adsorbates is decreased due to their vaporization. Considering the pore size effect, the adsorption characteristic depends on the adsorbate size, polarity and interaction between adsorbates, etc. At all cases employed in this study, NH$_3$ is barely adsorbed and $CH_3$SH is preferentially adsorbed on the graphite carbon. Our theoretical result is qualitatively good agreement with the experimental observation. However, there are some quantitative discrepancies depending on the functional groups and pore size distribution on the real activated carbons used in experiment.

Interconnected meso/microporous carbon derived from pumpkin seeds as an efficient electrode material for supercapacitors

  • Gopiraman, Mayakrishnan;Saravanamoorthy, Somasundaram;Kim, Seung-Hyun;Chung, Ill-Min
    • Carbon letters
    • /
    • v.24
    • /
    • pp.73-81
    • /
    • 2017
  • Interconnected meso/microporous activated carbons were prepared from pumpkin seeds using a simple chemical activation method. The porous carbon materials were prepared at different temperatures (PS-600, PS-700, PS-800, and PS-900) and demonstrated huge surface areas ($645-2029m^2g^{-1}$) with excellent pore volumes ($0.27-1.30cm^3g^{-1}$). The well-condensed graphitic structure of the prepared activated carbon materials was confirmed by Raman and X-ray diffraction analyses. The presence of heteroatoms (O and N) in the carbon materials was confirmed by X-ray photoemission spectroscopy. High resolution transmission electron microscopic images and selected area diffraction patters further revealed the porous structure and amorphous nature of the prepared electrode materials. The resultant porous carbons (PS-600, PS-700, PS-800, and PS-900) were utilized as electrode material for supercapacitors. To our delight, the PS-900 demonstrated a maximum specific capacitance (Cs) of $303F\;g^{-1}$ in 1.0 M $H_2SO_4 $ at a scan rate of 5 mV. The electrochemical impedance spectra confirmed the poor electrical resistance of the electrode materials. Moreover, the stability of the PS-900 was found to be excellent (no significant change in the Cs even after 6000 cycles).

Electrochemical Performance of Activated Carbons/Mn3O4-Carbon Blacks for Supercapacitor Electrodes

  • Kim, Ki-Seok;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2343-2347
    • /
    • 2013
  • In this work, manganese dioxide ($Mn_3O_4$)/carbon black (CB) composites (Mn-CBs) were prepared by an in situ coating method as electrical fillers and the effect of the Mn-CBs on the electrical performance of activated carbon (AC)-based electrodes was investigated. Structural features of Mn-CBs produced via in situ coating using a $KMnO_4$ solution were confirmed by XRD and TEM images. The electrical performances, including cv curves, charge-discharge behaviors, and specific capacitance of the ACs/Mn-CBs, were determined by cyclic voltammograms. It was found that the composites of $Mn_3O_4$ and CBs were successfully formed by in situ coating method. ACs/Mn-CBs showed higher electrical performance than that of AC electrodes fabricated with conventional CBs due to the pesudocapacitance reaction of manganese oxides in the aqueous electrolyte. Consequently, it is anticipated that the incorporation of $Mn_3O_4$ into CBs could facilitate the utilization of CBs as electrical filler, leading to enhanced electrochemical performance of AC electrodes for supercapacitors.

Electrochemical Characteristics of an Electric Double Layer Supercapacitor Electrode using Cooked-Rice based Activated Carbon (쌀밥으로 제조된 활성탄을 사용하는 전기이중층형 슈퍼커패시터 전극의 전기화학적 특성)

  • Jo, Un;Kim, Yong-Il;Yoon, Jae-Kook;Yoo, Jung-Joon;Yoon, Ha-Na;Kim, Sung-Soo;Kim, Jong-Huy
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.129-137
    • /
    • 2013
  • From the cooked-rice as a raw material, activated carbons throughout a hydrothermal synthesis and vacuum soak of KOH for chemical activation were obtained. Activated carbon electrodes for electric double layer supercapacitors were prepared and electrochemical characteristics were examined. Including the specific surface area by BET method and pore size distribution by NLDFT method, physical properties of activated carbons were investigated by means of SEM, EDS, XRD, and TG analyses. Cycle voltammetry and AC-impedance measurements were conducted to confirm the electrochemical characteristics for the electrodes. From hydrothermal synthesis, $5{\sim}7{\mu}m$ diameters of spherical carbons were obtained. After the activation at $800^{\circ}C$, it was notable for the activated carbon to be the specific surface $1631.8cm^2/g$, pore size distribution in 0.9~2.1 nm, and micro-pore volume $0.6154cm^3/g$. As electrochemical characteristics of the activated carbon electrode in 6M KOH electrolyte, it was confirmed that the specific capacitances of 236, 194, and 137 F/g at the scan rate of 5, 100, and 500 mV/s respectively were exhibited and 91.2% of initial capacitance after 100,000 cycles at 200 mV/s was maintained.