$CO_2$ Adsorption Behaviors of Activated Carbons Modified by Chelating Groups

킬레이트 관능기가 도입된 활성탄소의 이산화탄소 흡착거동

  • Received : 2010.03.10
  • Accepted : 2010.05.17
  • Published : 2010.08.10

Abstract

In this work, the adsorption behaviors of activated carbons (ACs) containing chelating functional groups were studied in $CO_2$ removal. The ACs were modified by pyrolysis of peroxide and glycidyl methacrylate graft polymerization in order to induce chelating functional groups, such as diethylenetriamine groups on the AC surfaces. The surface functional groups of the ACs were characterized by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The textural properties of the ACs were analyzed by $N_2$/77 K isotherms. Adsorption behaviors of the ACs were observed in the amounts of $CO_2$ adsorption. From the results, we found that the chelating functional groups on the AC surfaces led to enhance selectivity and chemisorption on $CO_2$ adsorption in spite of decreasing the physical adsorption properties.

본 연구에서는 킬레이트 관능기가 도입된 활성탄소의 이산화탄소 흡착거동에 관하여 고찰하였다. 활성탄소에 peroxide의 열분해를 통해 glycidyl methacrylate를 그래프트 중합한 후 에폭사이드기에 킬레이트 관능기로서 diethylene triamine을 도입하였다. 킬레이트 관능기가 처리된 활성탄소의 표면특성은 scanning electron microscope와 X-ray photoelectron spectroscopy를 사용하여 측정하였으며, 흡착표면적과 기공도는 BET법을 이용한 $N_2$ 기체 흡착을 통해 알아보았다. 또한 킬레이트 관능기 처리된 활성탄소의 흡착특성을 비교하기 위해 이산화탄소의 흡착실험을 수행하였다. 실험 결과, 활성탄소 표면에 도입된 킬레이트 관능기는 비표면적 감소에 따른 물리적 흡착량이 감소하더라도 이산화탄소에 대한 선택적, 화학적 흡착량을 향상시킴을 알 수 있었다.

Keywords

References

  1. Climate change 2007 : The physical science basis. Contribution of working group I to the fourth assessment report of intergovernmental panel on climate change ; 2007.
  2. M. M. Min, KIC News, 12, 15 (2009).
  3. V. Zelenak, D. Halamova, L. Gaberova, E. Bloch, and P. Llewellyn, Micropor. Mesopor. Mater., 116, 358 (2008). https://doi.org/10.1016/j.micromeso.2008.04.023
  4. X. Xu, Ch. Song, B. G. Miller, and A. W. Scaroni, Ind. Eng. Chem. Res., 44, 8133 (2005).
  5. Y. J. Yoo, H. S. Kim, J. H. Park, S. S. Han, and S. H. Cho, J. Korean Ind. Eng. Chem., 18, 273 (2007).
  6. R. W. Hughes, D. Y. Lu, E. J. Anthony, and A. Macchi, Fuel Processing Technol., 86, 1523 (2005). https://doi.org/10.1016/j.fuproc.2005.01.006
  7. P. Li, S. Zhang, S. Chen, Q. Zhang, J. Pan, and B. Ge, J. Appl. Polym. Sci., 108, 3851 (2008). https://doi.org/10.1002/app.27937
  8. K. M. Lee and Y. M. Jo, J. Korean Ind. Eng. Chem., 19, 533 (2008).
  9. J. K. Jeon, Y. K. Park, and K. Chue, J. KOSAE, 20, 99 (2004).
  10. N. D Hutson, Chem. Mater., 16, 4135 (2004). https://doi.org/10.1021/cm040060u
  11. M. G. Plaza, C. Pevida, A. Arenillas, F. Rubiera, and J. J. Pis, Fuel, 86, 2204 (2007). https://doi.org/10.1016/j.fuel.2007.06.001
  12. M. M. Maroto-Valer, Z. Tang, and Y. Zhang, Fuel Process Technol., 86, 1487 (2005). https://doi.org/10.1016/j.fuproc.2005.01.003
  13. A. Arenillas, F. Rubiera, F. B. Parra, C. O. Ania, and J. J. Pis, Appl. Surf. Sci., 252, 619 (2005). https://doi.org/10.1016/j.apsusc.2005.02.076
  14. T. C. Drage, A. Arenillas, K. M. Smith, C. Pevida, S. Piippo, and C. E. Snape, Fuel, 86, 22 (2007). https://doi.org/10.1016/j.fuel.2006.07.003
  15. J. Przepiorski, M. Skrodzewicz, and A. W. Morawski, Appl. Surf. Sci., 225, 235 (2004). https://doi.org/10.1016/j.apsusc.2003.10.006
  16. K. A. Mohamed, M. A. W. D. Wan, C. Y. Yin, and D. Adinata, Sep. Purif. Technol., 62, 611 (2008).
  17. S. J. Park, K. D. Kim, and J. R. Lee, J. Korean Ind. Eng. Chem., 9, 920 (1998).
  18. S. J. Park and K. D. Kim, J. Colloid Interface Sci., 212, 186 (1999). https://doi.org/10.1006/jcis.1998.6058
  19. N. Hiyoshi, K. Yogo, and T. Yashima, Chem. Lett., 33, 510 (2004). https://doi.org/10.1246/cl.2004.510
  20. D. I. Jang, K. S. Cho, and S. J. Park, J. Korean Ind. Eng. Chem., 20, 658 (2009).
  21. S. J. Park and Y. M. Kim, Mater. Sci. Eng. A, 391, 121 (2005). https://doi.org/10.1016/j.msea.2004.08.074
  22. S. J. Park and Y. M. Kim, J. Por. Mater., 12, 41 (2005). https://doi.org/10.1007/s10934-005-5232-1
  23. S. J. Park, G. H. Shim, and H. Y. Kim, Texile Sci. Eng., 42, 129 (2005).
  24. K. Zhang, J. Y. Lim, H. J. Choi, and Y. Seo, Diamond Relat. Mater., 17, 1604 (2008). https://doi.org/10.1016/j.diamond.2008.01.007
  25. S. H. Choi, Y. M. Hwang, and K. P. Lee, J. Chromatogr. A, 987, 323 (2003). https://doi.org/10.1016/S0021-9673(02)01840-X
  26. C. Liu, R. Bai, and L. Hong, J. Colloid Interface Sci., 303, 99 (2006). https://doi.org/10.1016/j.jcis.2006.07.057
  27. S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Chem. Soc., 60, 309 (1938). https://doi.org/10.1021/ja01269a023
  28. J. H. de Boer, B. G. Linsen, T. Plas, and G. J. Van Zonder, J. Catal., 4, 649 (1965). https://doi.org/10.1016/0021-9517(65)90264-2
  29. S. J. Park, S. Y. Jin, and J. Wawasaki, J. Korean Ind. Eng. Chem., 14, 1111 (2003).